Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Uniqueness in Discrete Tomography of Delone Sets with Long-Range Order

  • 87 Accesses

  • 1 Citations


We address the problem of determining finite subsets of Delone sets Λ⊂ℝd with long-range order by X-rays in prescribed Λ-directions, i.e., directions parallel to nonzero interpoint vectors of Λ. Here, an X-ray in direction u of a finite set gives the number of points in the set on each line parallel to u. For our main result, we introduce the notion of algebraic Delone sets Λ⊂ℝ2 and derive a sufficient condition for the determination of the convex subsets of these sets by X-rays in four prescribed Λ-directions.


  1. 1.

    Ammann, R., Grünbaum, B., Shephard, G.C.: Aperiodic tiles. Discrete Comput. Geom. 8, 1–25 (1992)

  2. 2.

    Baake, M., Huck, C.: Discrete tomography of Penrose model sets. Philos. Mag. 87, 2839–2846 (2007). arXiv:math-ph/0610056v1

  3. 3.

    Baake, M., Joseph, D.: Ideal and defective vertex configurations in the planar octagonal quasilattice. Phys. Rev. B 42, 8091–8102 (1990)

  4. 4.

    Baake, M., Moody, R.V. (eds.): Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13. AMS, Providence (2000)

  5. 5.

    Baake, M., Kramer, P., Schlottmann, M., Zeidler, D.: The triangle pattern—a new quasiperiodic tiling with fivefold symmetry. Mod. Phys. Lett. B 4, 249–258 (1990)

  6. 6.

    Baake, M., Kramer, P., Schlottmann, M., Zeidler, D.: Planar patterns with fivefold symmetry as sections of periodic structures in 4-space. Int. J. Mod. Phys. B 4, 2217–2268 (1990)

  7. 7.

    Baake, M., Gritzmann, P., Huck, C., Langfeld, B., Lord, K.: Discrete tomography of planar model sets. Acta Crystallogr. A 62, 419–433 (2006). arXiv:math/0609393v1 [math.MG]

  8. 8.

    Borevich, Z.I., Shafarevich, I.R.: Number Theory. Academic Press, San Diego (1966)

  9. 9.

    Darboux, M.G.: Sur un problème de géométrie élémentaire. Bull. Sci. Math. 2, 298–304 (1878)

  10. 10.

    Gähler, F.: Matching rules for quasicrystals: the composition–decomposition method. J. Non-Cryst. Solids 153–154, 160–164 (1993)

  11. 11.

    Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)

  12. 12.

    Gardner, R.J., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Am. Math. Soc. 349, 2271–2295 (1997)

  13. 13.

    Gardner, R.J., Gritzmann, P.: Uniqueness and complexity in discrete tomography. In: [19], pp. 85–114

  14. 14.

    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202, 45–71 (1999)

  15. 15.

    Gardner, R.J., McMullen, P.: On Hammer’s X-ray problem. J. Lond. Math. Soc. (2) 21, 171–175 (1980)

  16. 16.

    Gouvêa, F.Q.: p-adic Numbers. Springer, New York (1993)

  17. 17.

    Gritzmann, P.: On the reconstruction of finite lattice sets from their X-rays. In: Ahronovitz, E., Fiorio, C. (eds.) Lecture Notes on Computer Science, pp. 19–32. Springer, London (1997)

  18. 18.

    Gritzmann, P., Langfeld, B.: On the index of Siegel grids and its application to the tomography of quasicrystals. Eur. J. Comb. 29, 1894–1909 (2008)

  19. 19.

    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston (1999)

  20. 20.

    Huck, C.: Discrete tomography of delone sets with long-range order. Ph.D. thesis (Universität Bielefeld). Logos Verlag, Berlin (2007)

  21. 21.

    Huck, C.: Uniqueness in discrete tomography of planar model sets, notes (2007). arXiv:math/0701141v2 [math.MG]

  22. 22.

    Huck, C.: A note on affinely regular polygons. Eur. J. Comb. 30(2), 387–395 (2009). arXiv:0801.3218v1 [math.MG]

  23. 23.

    Huck, C.: Discrete tomography of icosahedral model sets. Acta Crystallogr. A 65, 240–248 (2009). arXiv:0705.3005v2 [math.MG]

  24. 24.

    Huck, C.: On the existence of U-polygons of class c≥4 in planar point sets. Discrete Math. (in press). arXiv:0811.3546v1 [math.MG]

  25. 25.

    Kisielowski, C., Schwander, P., Baumann, F.H., Seibt, M., Kim, Y., Ourmazd, A.: An approach to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultramicroscopy 58, 131–155 (1995)

  26. 26.

    Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Springer, New York (1984)

  27. 27.

    Lagarias, J.C.: Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21(2), 161–191 (1999)

  28. 28.

    Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)

  29. 29.

    Moody, R.V.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J.-P. (eds.) From Quasicrystals to More Complex Systems, pp. 145–166. EDP Sciences, Les Ulis, and Springer, Berlin (2000). arXiv:math/0002020v1 [math.MG]

  30. 30.

    Pleasants, P.A.B.: Designer quasicrystals: cut-and-project sets with pre-assigned properties. In: [4], pp. 95–141

  31. 31.

    Salem, R.: Algebraic Numbers and Fourier Analysis. Heath, Boston (1963)

  32. 32.

    Schlottmann, M.: Cut-and-project sets in locally compact Abelian groups. In: Patera, J. (ed.) Quasicrystals and Discrete Geometry. Fields Institute Monographs, vol. 10, pp. 247–264. AMS, Providence (1998)

  33. 33.

    Schlottmann, M.: Generalized model sets and dynamical systems. In: [4], pp. 143–159

  34. 34.

    Schwander, P., Kisielowski, C., Seibt, M., Baumann, F.H., Kim, Y., Ourmazd, A.: Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy. Phys. Rev. Lett. 71, 4150–4153 (1993)

  35. 35.

    Steurer, W.: Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 219, 391–446 (2004)

  36. 36.

    Washington, L.C.: Introduction to Cyclotomic Fields, 2nd edn. Springer, New York (1997)

Download references

Author information

Correspondence to Christian Huck.

Additional information

The author was supported by the German Research Council (Deutsche Forschungsgemeinschaft), within the CRC 701, and by EPSRC via Grant EP/D058465/1.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huck, C. Uniqueness in Discrete Tomography of Delone Sets with Long-Range Order. Discrete Comput Geom 42, 740 (2009). https://doi.org/10.1007/s00454-009-9213-z

Download citation


  • Discrete tomography
  • Discrete parallel X-ray
  • U-polygon
  • Algebraic Delone set
  • p-adic valuation
  • Cyclotomic model set