Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Johnson–Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite

Abstract

Let X be a normed space that satisfies the Johnson–Lindenstrauss lemma (J–L lemma, in short) in the sense that for any integer n and any x 1,…,x n X, there exists a linear mapping L:XF, where FX is a linear subspace of dimension O(log n), such that ‖x i x j ‖≤‖L(x i )−L(x j )‖≤O(1)⋅‖x i x j ‖ for all i,j∈{1,…,n}. We show that this implies that X is almost Euclidean in the following sense: Every n-dimensional subspace of X embeds into Hilbert space with distortion \(2^{2^{O(\log^{*}n)}}\) . On the other hand, we show that there exists a normed space Y which satisfies the J–L lemma, but for every n, there exists an n-dimensional subspace E n Y whose Euclidean distortion is at least 2Ω(α(n)), where α is the inverse Ackermann function.

References

  1. 1.

    Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform. In: STOC 2006: ACM Symposium on Theory of Computing, pp. 557–563 (2006)

  2. 2.

    Alon, N., Kaplan, H., Nivasch, G., Sharir, M., Smorodinsky, S.: Weak ε-nets and interval chains. In: Proceedings of the Nineteenth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20–22, 2008, pp. 1194–1203. SIAM, Philadelphia (2008)

  3. 3.

    Arias-de Reyna, J., Rodríguez-Piazza, L.: Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces. Isr. J. Math. 79(1), 103–111 (1992)

  4. 4.

    Ball, K.: An elementary introduction to modern convex geometry. In: Flavors of Geometry. Math. Sci. Res. Inst. Publ., vol. 31, pp. 1–58. Cambridge Univ. Press, Cambridge (1997)

  5. 5.

    Bellenot, S.F.: The Banach space T and the fast growing hierarchy from logic. Isr. J. Math. 47(4), 305–313 (1984)

  6. 6.

    Benyamini, Y., Lindenstrauss, J.: In: Geometric Nonlinear Functional Analysis. Vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

  7. 7.

    Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Isr. J. Math. 52(1–2), 46–52 (1985)

  8. 8.

    Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162(1–2), 73–141 (1989)

  9. 9.

    Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in l 1. J. ACM 52(5), 766–788 (2005) (electronic)

  10. 10.

    Casazza, P.G., Johnson, W.B., Tzafriri, L.: On Tsirelson’s space. Isr. J. Math. 47(2–3), 81–98 (1984)

  11. 11.

    Casazza, P.G., Odell, E.: Tsirelson’s space and minimal subspaces. In: Texas Functional Analysis Seminar 1982–1983 (Austin, TX). Longhorn Notes, pp. 61–72. Univ. Texas Press, Austin (1983)

  12. 12.

    Casazza, P.G., Shura, T.J.: Tsirel’son’s Space. Lecture Notes in Mathematics, vol. 1363. Springer, Berlin (1989). With an appendix by J. Baker, O. Slotterbeck, and R. Aron

  13. 13.

    Charikar, M., Sahai, A.: Dimension reduction in the 1 norm. In: 43rd Annual IEEE Conference on Foundations of Computer Science, pp. 251–260. IEEE Computer Society, Los Alamitos (2002)

  14. 14.

    Cirel’son, B.S.: It is impossible to imbed 1 p of c 0 into an arbitrary Banach space. Funkt. Anal. Prilozh. 8(2), 57–60 (1974)

  15. 15.

    Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proc. Sympos. Pure Math., vol. VII, pp. 101–180. Am. Math. Soc., Providence (1963)

  16. 16.

    Figiel, T., Johnson, W.B.: A uniformly convex Banach space which contains no l p . Compos. Math. 29, 179–190 (1974)

  17. 17.

    Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)

  18. 18.

    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: 42nd IEEE Symposium on Foundations of Computer Science, Las Vegas, NV, 2001, pp. 10–33. IEEE Computer Soc., Los Alamitos (2001)

  19. 19.

    Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM 53(3), 307–323 (2006) (electronic)

  20. 20.

    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC ’98 (Dallas, TX), pp. 604–613. ACM, New York (1999)

  21. 21.

    John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948)

  22. 22.

    Johnson, W.B.: A reflexive Banach space which is not sufficiently Euclidean. Stud. Math. 55(2), 201–205 (1976)

  23. 23.

    Johnson, W.B.: Banach spaces all of whose subspaces have the approximation property. In: Special Topics of Applied Mathematics, Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979, pp. 15–26. North-Holland, Amsterdam (1980)

  24. 24.

    Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability (New Haven, Conn., 1982). Contemp. Math., vol. 26, pp. 189–206. Am. Math. Soc., Providence (1984)

  25. 25.

    Johnson, W.B., Lindenstrauss, J., Schechtman, G.: On Lipschitz embedding of finite metric spaces in low-dimensional normed spaces. In: Geometrical Aspects of Functional Analysis (1985/86). Lecture Notes in Math., vol. 1267, pp. 177–184. Springer, Berlin (1987)

  26. 26.

    Johnson, W.B., Schechtman, G.: Finite dimensional subspaces of L p . In: Handbook of the Geometry of Banach Spaces, vol. I, pp. 837–870. North-Holland, Amsterdam (2001)

  27. 27.

    Kleinberg, J.M.: Two algorithms for nearest-neighbor search in high dimensions. In: STOC ’97 (El Paso, TX), pp. 599–608. ACM, New York (1999) (electronic)

  28. 28.

    Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474 (2000) (electronic)

  29. 29.

    Kwapień, S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Stud. Math. 44, 583–595 (1972). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI

  30. 30.

    Lee, J.R., Mendel, M., Naor, A.: Metric structures in L 1: dimension, snowflakes, and average distortion. Eur. J. Combin. 26(8), 1180–1190 (2005)

  31. 31.

    Lee, J.R., Naor, A.: Embedding the diamond graph in L p and dimension reduction in L 1. Geom. Funct. Anal. 14(4), 745–747 (2004)

  32. 32.

    Matoušek, J.: Bi-Lipschitz embeddings into low-dimensional Euclidean spaces. Comment. Math. Univ. Carol. 31(3), 589–600 (1990)

  33. 33.

    Matoušek, J.: On the distortion required for embedding finite metric spaces into normed spaces. Isr. J. Math. 93, 333–344 (1996)

  34. 34.

    Nielsen, N.J., Tomczak-Jaegermann, N.: Banach lattices with property (H) and weak Hilbert spaces. Ill. J. Math. 36(3), 345–371 (1992)

  35. 35.

    Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)

  36. 36.

    Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conference Series in Mathematics, vol. 60. Conference Board of the Mathematical Sciences, Washington (1986)

  37. 37.

    Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94. Cambridge University Press, Cambridge (1989)

  38. 38.

    Schechtman, G.: More on embedding subspaces of L p in l r n . Compos. Math. 61(2), 159–169 (1987)

  39. 39.

    Talagrand, M.: Embedding subspaces of L 1 into l 1 N . Proc. Am. Math. Soc. 108(2), 363–369 (1990)

  40. 40.

    Tomczak-Jaegermann, N.: Computing 2-summing norm with few vectors. Ark. Mat. 17(2), 273–277 (1979)

  41. 41.

    Tomczak-Jaegermann, N.: The Banach–Mazur distance between symmetric spaces. Isr. J. Math. 46(1–2), 40–66 (1983)

  42. 42.

    Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman, Harlow (1989)

  43. 43.

    Vempala, S.S.: The Random Projection Method. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65. American Mathematical Society, Providence (2004). With a foreword by Christos H. Papadimitriou

Download references

Author information

Correspondence to Assaf Naor.

Additional information

Research of W.B. Johnson supported in part by NSF grants DMS-0503688 and DMS-0528358.

Research of A. Naor supported in part by NSF grants DMS-0528387, CCF-0635078, and CCF-0832795, BSF grant 2006009, and the Packard Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, W.B., Naor, A. The Johnson–Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite. Discrete Comput Geom 43, 542–553 (2010). https://doi.org/10.1007/s00454-009-9193-z

Download citation

Keywords

  • Dimension reduction
  • Johnson–Lindenstrauss lemma