Discrete & Computational Geometry

, Volume 30, Issue 4, pp 591–606 | Cite as

Spanning Trees Crossing Few Barriers

  • Tetsuo AsanoEmail author
  • Mark de BergEmail author
  • Otfried CheongEmail author
  • Leonidas J. GuibasEmail author
  • Jack SnoeyinkEmail author
  • Hisao TamakiEmail author


We consider the problem of finding low-cost spanning trees for sets of $n$ points in the plane, where the cost of a spanning tree is defined as the total number of intersections of tree edges with a given set of $m$ barriers. We obtain the following results: (i) if the barriers are possibly intersecting line segments, then there is always a spanning tree of cost $O(\min(m^2,m\sqrt{n}))$; (ii) if the barriers are disjoint line segments, then there is always a spanning tree of cost $O(m)$; (iii) ] if the barriers are disjoint convex objects, then there is always a spanning tree of cost $O(n+m)$. All our bounds are worst-case optimal, up to multiplicative constants.


Line Segment Span Tree Multiplicative Constant Convex Object Disjoint Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Lecture Notes in Computer Science, vol. 703. Springer-Verlag, Berlin, 1993. Google Scholar
  2. 2.
    de Berg, M. 2000Linear size binary space partitions for uncluttered scenes.Algorithmica28353366CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    de Berg, M., Katz, M., van der Stappen, F., Vleugels, J. 2002Realistic input models for geometric algorithms.Algorithmica348197CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom. 4:467–489, 1989. Google Scholar
  5. 5.
    F. d’Amore and P. G. Franciosa. On the optimal binary plane partition for sets of isothetic rectangles. Inform. Process. Lett., 44:255–259, 1992. Google Scholar
  6. 6.
    H. Edelsbrunner, L. J. Guibas, and J. Stolfi. \newblock Optimal point location in a monotone subdivision. SIAM J. Comput. 15:317–340, 1986. Google Scholar
  7. 7.
    L. Fejes Tóth. Illumination of convex discs. Acta Math. Acad. Sci. Hungar., 29:355–360, 1977. Google Scholar
  8. 8.
    M. S. Paterson and F. F. Yao. \newblock Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom. 5:485–503, 1990. Google Scholar
  9. 9.
    M. Sharir and P. K. Agarwal. Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995. Google Scholar
  10. 10.
    J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delaunay triangulations with applications. In Proc. Annual European Symposium Algorithms, pages 459–471. Lecture Notes in Computer Science, vol. 1284. Springer-Verlag, Berlin, 1997. Google Scholar
  11. 11.
    J. Urrutia. Art gallery and illumination problems. In Handbook of Computational Geometry, J.R. Sack and J. Urrutia, eds., pages 973–1027, North-Holland, Amsterdam, 2000. Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Japan Advanced Institute of Science and Technology, Asahidai, Tatsunokuchi, Ishikawa, 923-1292Japan
  2. 2.Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB UtrechtThe Netherlands
  3. 3.Department of Computer Science, Stanford University, Stanford, CA 94305USA
  4. 4.Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175USA
  5. 5.Department of Computer Science, Meiji University, Higashi-Mita, Tama-ku, Kawasaki, 214Japan

Personalised recommendations