Advertisement

Algorithmica

pp 1–57 | Cite as

Energy-Optimal Routes for Battery Electric Vehicles

  • Moritz BaumEmail author
  • Julian Dibbelt
  • Thomas Pajor
  • Jonas Sauer
  • Dorothea Wagner
  • Tobias Zündorf
Article
  • 15 Downloads

Abstract

We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles, which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks.

Keywords

Algorithm engineering Shortest paths Speedup techniques Electric vehicles Profile search 

Notes

Acknowledgements

We would like to thank Raphael Luz for providing the consumption data [38, 66], Renato Werneck for running PUNCH [21], Moritz Kobitzsch for interesting discussions, and Christian Schulz and Dennis Luxen for providing Buffoon [53] and OSRM [48], respectively, which we used in our preliminary experiments. We thank Sabine Storandt for making Jap-OSM available, and Konstantinos Demestichas for providing sample data on energy consumption of EVs.

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. WA 654/23-1).

References

  1. 1.
    Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010)Google Scholar
  2. 2.
    Atallah, M.J.: Some dynamic computational geometry problems. Comput. Math. Appl. 11(12), 1171–1181 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks, Lecture Notes in Computer Science, vol. 9220, pp. 19–80. Springer (2016)Google Scholar
  4. 4.
    Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18, 1.4:1–1.4:43 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012)Google Scholar
  6. 6.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. ACM J. Exp. Algorithmics 15, 2.3:1–2.3:31 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018)Google Scholar
  8. 8.
    Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015)Google Scholar
  9. 9.
    Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)Google Scholar
  10. 10.
    Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013)Google Scholar
  11. 11.
    Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route planning in road networks with user preferences. In: Proceedings of the 15th International Symposium on Experimental Algorithms (SEA’16), Lecture Notes in Computer Science, vol. 9685, pp. 33–49. Springer (2016)Google Scholar
  12. 12.
    Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)Google Scholar
  13. 13.
    Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)Google Scholar
  14. 14.
    Bellman, R.: On a routing problem. Q Appl. Math. 16(1), 87–90 (1958)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cherkassky, B.V., Georgiadis, L., Goldberg, A.V., Tarjan, R.E., Werneck, R.F.: Shortest-path feasibility algorithms: an experimental evaluation. ACM J. Exp. Algorithmics 14, 2.7:1–2.7:37 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  17. 17.
    Davenport, H., Schinzel, A.: A combinatorial problem connected with differential equations. Am. J. Math. 87(3), 684–694 (1965)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004)Google Scholar
  19. 19.
    Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transp. Sci. 51(2), 566–591 (2017)CrossRefGoogle Scholar
  21. 21.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011)Google Scholar
  22. 22.
    Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009)Google Scholar
  23. 23.
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007)Google Scholar
  24. 24.
    Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009)Google Scholar
  25. 25.
    Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM J. Exp. Algorithmics 21, 1.5:1–1.5:49 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)CrossRefGoogle Scholar
  28. 28.
    Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013)Google Scholar
  29. 29.
    Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011)Google Scholar
  30. 30.
    Fiori, C., Ahn, K., Rakha, H.A.: Power-based electric vehicle energy consumption model: model development and validation. Appl. Energy 168, 257–268 (2016)CrossRefGoogle Scholar
  31. 31.
    Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956)Google Scholar
  32. 32.
    Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  34. 34.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005)Google Scholar
  35. 35.
    Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and efficient electric vehicle routes. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’14), pp. 193–202. ACM (2014)Google Scholar
  36. 36.
    Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm Engineering & Experiments (ALENEX’04), pp. 100–111. SIAM (2004)Google Scholar
  37. 37.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  38. 38.
    Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009)Google Scholar
  39. 39.
    Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13, 2.5:1–2.5:26 (2009)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Huber, G., Bogenberger, K.: Long-trip optimization of charging strategies for battery electric vehicles. Transp. Res. Record: J. Transp. Res. Board 2497, 45–53 (2015)CrossRefGoogle Scholar
  41. 41.
    Johnson, D.B.: A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)CrossRefGoogle Scholar
  44. 44.
    Kluge, S., Sánta, C., Dangl, S., Wild, S.M., Brokate, M., Reif, K., Busch, F.: On the computation of the energy-optimal route dependent on the traffic load in Ingolstadt. Transp. Res. Part C: Emerg. Technol. 36, 97–115 (2013)CrossRefGoogle Scholar
  45. 45.
    Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011)Google Scholar
  46. 46.
    Liao, C.S., Lu, S.H., Shen, Z.J.M.: The electric vehicle touring problem. Transp. Res. Part B: Methodol. 86, 163–180 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014)Google Scholar
  48. 48.
    Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’11), pp. 513–516. ACM (2011)Google Scholar
  49. 49.
    Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21(3), 295–319 (1991)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for electric vehicles. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1402–1407. AAAI Press (2011)Google Scholar
  52. 52.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Proceedings of the 13th Annual European Conference on Algorithms (ESA’05), Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer (2005)Google Scholar
  53. 53.
    Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX’12), pp. 16–29. SIAM (2012)Google Scholar
  54. 54.
    Schönfelder, R., Leucker, M.: Abstract routing models and abstractions in the context of vehicle routing. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp. 2639–2645. AAAI Press (2015)Google Scholar
  55. 55.
    Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014)Google Scholar
  56. 56.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case study from public railroad transport. ACM J. Exp. Algorithmics 5, 12:1–12:23 (2000)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002)Google Scholar
  58. 58.
    Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012)Google Scholar
  60. 60.
    Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013)Google Scholar
  61. 61.
    Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012)Google Scholar
  62. 62.
    Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid vehicles. Transp. Res. Part B: Methodol. 103, 111–135 (2017)CrossRefGoogle Scholar
  63. 63.
    Sun, Z., Zhou, X.: To save money or to save time: intelligent routing design for plug-in hybrid electric vehicle. Transp. Res. Part D: Transp. Environ. 43, 238–250 (2016)CrossRefGoogle Scholar
  64. 64.
    Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive Routing and Recharging Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois (2014)Google Scholar
  65. 65.
    Sweeting, W.J., Hutchinson, A.R., Savage, S.D.: Factors affecting electric vehicle energy consumption. Int. J. Sustain. Eng. 4(3), 192–201 (2011)CrossRefGoogle Scholar
  66. 66.
    Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012)Google Scholar
  67. 67.
    Wang, Y., Jiang, J., Mu, T.: Context-aware and energy-driven route optimization for fully electric vehicles via crowdsourcing. IEEE Trans. Intell. Transp. Syst. 14(3), 1331–1345 (2013)CrossRefGoogle Scholar
  68. 68.
    Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport–Schinzel sequences by segments. Discret. Comput. Geom. 3(1), 15–47 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.SunnyvaleUSA

Personalised recommendations