The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon
- 13 Downloads
Abstract
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an \(O(n\log \log n+ m\log m)\)-time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This improves the previously best known algorithm by Aronov et al. (Discrete Comput Geom 9(3):217–255, 1993). In the case that all point sites are on the boundary of the simple polygon, we can compute the geodesic farthest-point Voronoi diagram in \(O((n+m) \log \log n)\) time.
Keywords
Farthest-point Voronoi diagram Simple polygon Geodesic metricNotes
Acknowledgements
Funding was provided by Ministry of Science and ICT (KR) (Grant No. IITP-2017-0-00905).
References
- 1.Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)MathSciNetCrossRefGoogle Scholar
- 2.Ahn, H.-K., Barba, L., Bose, P., Carufel, J.-L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. Discrete Comput. Geom. 56(4), 836–859 (2016)MathSciNetCrossRefGoogle Scholar
- 3.Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom. 9(3), 217–255 (1993)MathSciNetCrossRefGoogle Scholar
- 4.Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. Technical Report SOCS-85.32, McGill University (1985)Google Scholar
- 5.Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 339–349 (1982)Google Scholar
- 6.Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)MathSciNetCrossRefGoogle Scholar
- 7.Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1), 209–233 (1987)MathSciNetCrossRefGoogle Scholar
- 8.Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)MathSciNetCrossRefGoogle Scholar
- 9.Hershberger, J., Suri, S.: Matrix searching with the shortest-path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)MathSciNetCrossRefGoogle Scholar
- 10.Klein, R.: Concrete and Abstract Voronoi Diagrams. Springer, Berlin (1989)CrossRefGoogle Scholar
- 11.Klein, R., Lingas, A.: Hamiltonian abstract Voronoi diagrams in linear time. In: Prooceedings of the 5th International Symposium on Algorithms and Computation (ISAAC 1994), pp. 11–19. Springer, Berlin (1994)CrossRefGoogle Scholar
- 12.Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633–701. Elsevier (2000)Google Scholar
- 13.Oh, E., Ahn, H.-K.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. In: Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77, pp. 52:1–52:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)Google Scholar
- 14.Oh, E., Barba, L., Ahn, H.-K.: The farthest-point geodesic Voronoi diagram of points on the boundary of a simple polygon. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG 2016), vol. 51, pp. 56:1–56:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2016)Google Scholar
- 15.Papadopoulou, E.: \(k\)-pairs non-crossing shortest paths in a simple polygon. Int. J. Comput. Geom. Appl. 9(6), 533–552 (1999)MathSciNetCrossRefGoogle Scholar
- 16.Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)MathSciNetCrossRefGoogle Scholar
- 17.Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)MathSciNetCrossRefGoogle Scholar
- 18.Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In: Proceeding of EURASIP-86, Part 2, pp. 853–856 (1986)Google Scholar