pp 1–19 | Cite as

Non-clairvoyantly Scheduling to Minimize Convex Functions

  • Kyle Fox
  • Sungjin Im
  • Janardhan KulkarniEmail author
  • Benjamin Moseley


The paper considers scheduling jobs online to minimize the objective \(\sum _{i \in [n]}w_ig(C_i-r_i)\), where \(w_i\) is the weight of job i, \(r_i\) is its release time, \(C_i\) is its completion time and g is any non-decreasing convex function. It is known that the clairvoyant algorithm Highest-Density-First (HDF) is \((2+\epsilon )\)-speed O(1)-competitive for this objective on a single machine for any fixed \( 0< \epsilon < 1\) (Im et al., in: ACM-SIAM symposium on discrete algorithms, pp 1254–1265, 2012). In this paper, we give the first non-trivial results for this problem when g is a non-decreasing convex function and the algorithm must be non-clairvoyant. More specifically, our results include:
  • A \((2+\epsilon )\)-speed O(1)-competitive non-clairovyant algorithm on a single machine for all non-decreasing convex g, matching the performance of HDF for any fixed \( 0< \epsilon < 1\).

  • A \((3+\epsilon )\)-speed O(1)-competitive non-clairovyant algorithm on multiple identical machines for all non-decreasing convex g for any fixed \( 0< \epsilon < 1\).

The paper gives the first non-trivial upper-bound on multiple machines even if the algorithm is allowed to be clairvoyant. All performance guarantees above hold for all non-decreasing convex functions gsimultaneously. The positive results are supplemented by almost matching lower bounds. We show that any algorithm that is oblivious to g is not O(1)-competitive with speed augmentation less than 2 on a single machine. Further, any non-clairvoyent algorithm that knows the function g cannot be O(1)-competitive with speed augmentation less than \(\sqrt{2}\) on a single machine or  \((2-\frac{1}{m})\) on m identical machines.


Online algorithms Scheduling theory Competitive analysis 



The authors would like to thank the anonymous reviewers of previous versions of this paper for their helpful, and sometimes quite detailed, comments and suggestions.


  1. 1.
    Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1228–1241 (2012)Google Scholar
  2. 2.
    Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with immediate dispatching. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 11–18 (2003)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow time without migration. SIAM J. Comput. 31(5), 1370–1382 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. J. Algorithms 52(2), 120–133 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bansal, N., Chan, H.-L.: Weighted flow time does not admit o(1)-competitive algorithms. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1238–1244 (2009)Google Scholar
  6. 6.
    Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better scalable algorithms for broadcast scheduling. ACM Trans. Algorithms 11(1), 3:1–3:24 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bansal, N., Pruhs, K.: Server scheduling to balance priorities, fairness, and average quality of service. SIAM J. Comput. 39(7), 3311–3335 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize the total flow time on single and parallel machines. J. ACM 51(4), 517–539 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time and deadline scheduling. J. Discret. Algorithms 4(3), 339–352 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling continuous job streams. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 270–279 (1998)Google Scholar
  12. 12.
    Borodin, A., El-Yaniv, R.: On ranomization in online computation. In: IEEE Conference on Computational Complexity, pp. 226–238 (1997)Google Scholar
  13. 13.
    Bussema, C., Torng, E.: Greedy multiprocessor server scheduling. Oper. Res. Lett. 34(4), 451–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: ACM Symposium on Theory of Computing, pp. 363–372 (2004)Google Scholar
  15. 15.
    Chekuri, C., Im, S., Moseley, B.: Online scheduling to minimize maximum response time and maximum delay factor. Theory Comput. 8(1), 165–195 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chekuri, C., Khanna, S., Zhu, A.: Algorithms for minimizing weighted flow time. In: ACM Symposium on Theory of Computing, pp. 84–93 (2001)Google Scholar
  17. 17.
    Edmonds, J., Im, S., Moseley, B.: Online scalable scheduling for the \(\ell _k\)-norms of flow time without conservation of work. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 109–119 (2011)Google Scholar
  18. 18.
    Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup curves. ACM Trans. Algorithms 8(3), 28:1–28:10 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fox, K., Moseley, B.: Online scheduling on identical machines using SRPT. In: ACM-SIAM Symposium on Discrete Algorithms (2011)Google Scholar
  20. 20.
    Im, S., Moseley, B.: An online scalable algorithm for minimizing \(\ell _k\)-norms of weighted flow time on unrelated machines. In: ACM-SIAM Symposium on Discrete Algorithms (2011)Google Scholar
  21. 21.
    Im, S., Moseley, B.: Fair scheduling via iterative quasi-uniform sampling. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16-19 January, pp. 2601–2615, (2017)Google Scholar
  22. 22.
    Im, S., Moseley, B., Pruhs, K.: Online scheduling with general cost functions. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1254–1265 (2012)Google Scholar
  23. 23.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified approach to scheduling on unrelated parallel machines. J. ACM 56(5), 28 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. J. Comput. Syst. Sci. 73(6), 875–891 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. Algorithmica 32(2), 163–200 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pruhs, K., Sgall, J., Torng, E.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, chapter Online Scheduling (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kyle Fox
    • 1
  • Sungjin Im
    • 2
  • Janardhan Kulkarni
    • 3
    Email author
  • Benjamin Moseley
    • 4
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.University of California-MercedMercedUSA
  3. 3.Microsoft ResearchRedmondUSA
  4. 4.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations