Advertisement

Algorithmica

, Volume 81, Issue 9, pp 3534–3585 | Cite as

Minmax Regret k-Sink Location on a Dynamic Path Network with Uniform Capacities

  • Guru Prakash Arumugam
  • John Augustine
  • Mordecai J. GolinEmail author
  • Prashanth Srikanthan
Article
  • 28 Downloads

Abstract

In Dynamic flow networks an edge’s capacity is the amount of flow (items) that can enter it in unit time. All flow must be moved to sinks and congestion occurs if flow has to wait at a vertex for other flow to leave. In the uniform capacity variant all edges have the same capacity. The minmax k-sink location problem is to place k sinks minimizing the maximum time before all items initially on vertices can be evacuated to a sink. The minmax regret version introduces uncertainty into the input; the amount at each source is now only specified to within a range. The problem is to find a universal solution (placement of k sinks) whose regret (difference from optimal for a given input) is minimized over all inputs consistent with the given range restrictions. The previous best algorithms for the minmax regret version of the k-sink location problem on a path with uniform capacities ran in O(n) time for \(k=1\), \(O(n \log ^ 4 n)\) time for \(k=2\) and \({\varOmega }(n^{k+1})\) for \( k >2\). A major bottleneck to improving those solutions was that minmax regret seemed an inherently global property. This paper derives new combinatorial insights that allow decomposition into local problems. This permits designing two new algorithms. The first runs in \(O(n^3 \log n)\) time independent of k and the second in \(O( n k^2 \log ^{k+1} n)\) time. These improve all previous algorithms for \(k >1\) and, for \(k > 2\), are the first polynomial time algorithms known.

Keywords

Dynamic flow networks Sink location problems Evacuation Minmax regret 

Notes

Supplementary material

References

  1. 1.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arumugam, G.P., Augustine, J., Golin, M.J., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404.5448 (2014)
  3. 3.
    Averbakh, I., Berman, O.: Minimax regret p-center location on a network with demand uncertainty. Location Science 5(4), 247–254 (1997)zbMATHGoogle Scholar
  4. 4.
    Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization problems. Discrete Appl. Math. 138(3), 289–301 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum k-sink problem on dynamic flow path networks. In: International Workshop on Combinatorial Algorithms, pp. 78–89. Springer (2018)Google Scholar
  6. 6.
    Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–229 (1980)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. In: Proceedings of WADS’2017 (2017)Google Scholar
  8. 8.
    Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: An o (n\(\hat{~}\) 2 log\(\hat{~}\) 2 n) time algorithm for minmax regret minsum sink on path networks. In: 29th International Symposium on Algorithms and Computation (ISAAC 2018) (2018)Google Scholar
  9. 9.
    Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on dynamic path and tree networks. Theor. Comput. Sci. 607, 411–425 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bhattacharya, B., Kameda, T., Song, Z.: A linear time algorithm for computing minmax regret 1-median on a tree network. Algorithmica 70(1), 2–21 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bhattacharya, B., Kameda, T., Song, Z.: Minmax regret 1-center algorithms for path/tree/unicycle/cactus networks. Discrete Appl. Math. 195, 18–30 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bhattacharya, Binay K., Kameda, Tsunehiko: A linear time algorithm for computing minmax regret 1-median on a tree. In: COCOON’2012, pp. 1–12 (2012)Google Scholar
  13. 13.
    Brodal, G.S., Georgiadis, L., Katriel, I.: An O(nlogn) version of the Averbakh–Berman algorithm for the robust median of a tree. Oper. Res. Lett. 36(1), 14–18 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Candia-Véjar, A., Álvarez-Miranda, E., Maculan, N.: Minmax regret combinatorial optimization problems: an algorithmic perspective. RAIRO - Oper. Res. 45(2), 101–129 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: 27th International Symposium on Algorithms and Computation (ISAAC 2016), pp. 25:1–25:13 (2016)Google Scholar
  16. 16.
    Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Proceedings of TAMC’2013, pp. 121–132 (2013)Google Scholar
  17. 17.
    Conde, E.: A note on the minmax regret centdian location on trees. Oper. Res. Lett. 36(2), 271–275 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Golin, M.J., Khodabande, H., Qin, B.: Non-approximability and polylogarithmic approximations of the single-sink unsplittable and confluent dynamic flow problems. In: 28th International Symposium on Algorithms and Computation (ISAAC 2017), pp. 41:1–41:13 (2017)Google Scholar
  20. 20.
    Higashikawa, Y., Augustine, J., Cheng, S.-W., Golin, M.J., Katoh, N., Ni, G., Bing, S., Yinfeng, X.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci. 588(11), 24–36 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location [roblem in dynamic tree networks with uniform capacity. In: Proceedings of the 8’th International Workshop on Algorithms and Computation (WALCOM’2014), pp. 125–137 (2014)Google Scholar
  22. 22.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theoretical Computer Science 607, 2–15 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kamiyama, N.: Studies on quickest flow problems in dynamic networks and arborescence problems in directed graphs: a theoretical approach to evacuation planning in urban areas. Ph.D. thesis, Kyoto University (2009)Google Scholar
  25. 25.
    Kouvelis, P., Gang, Y.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  26. 26.
    Li, H., Yinfeng, X.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res. 250(2), 360–366 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Li, H., Xu, Y., Ni, G.: Minimax regret vertex 2-sink location problem in dynamic path networks. J. Comb. Optim. 31(1), 79–94 (2016)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \(O(n \log ^2 n) \)algorithm for the optimal sink location problem in dynamic tree networks. Discrete Appl. Math. 154(2387–2401), 251–264 (2006)zbMATHGoogle Scholar
  29. 29.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ni, G., Xu, Y., Dong, Y.: Minimax regret k-sink location problem in dynamic path networks. In: Proceedings of the 2014 International Conference on Algorithmic Aspects of Information and Management (AAIM 2014) (2014)Google Scholar
  31. 31.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  32. 32.
    Puerto, J., Rodriguez-Chia, A.M., Tamir, A.: Minimax regret single-facility ordered median location problems on networks. INFORMS J. Comput. 21(1), 77–87 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Puerto, J., Ricca, F., Scozzari, A.: Minimax regret path location on trees. Networks 58(2), 147–158 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Wang, H.: Minmax regret 1-facility location on uncertain path networks. In: Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC’13), pp. 733–743 (2013)Google Scholar
  35. 35.
    Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res. 239(3), 636–643 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Yinfeng, X., Li, H.: Minimax regret 1-sink location problem in dynamic cycle networks. Inf. Process. Lett. 115(2), 163–169 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Ye, J.-H., Wang, B.-F.: On the minmax regret path median problem on trees. J. Comput. Syst. Sci. 1, 1–12 (2015)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Yu, H.-I., Lin, T.-C., Wang, B.-F.: Improved algorithms for the minmax-regret 1-center and 1-median problems. ACM Trans. Algorithms 4(3), 1–27 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Google Inc.Mountain ViewUSA
  2. 2.IIT MadrasChennaiIndia
  3. 3.Hong Kong USTKowloonHong Kong
  4. 4.Microsoft Inc.RedmondUSA

Personalised recommendations