Advertisement

Algorithmica

pp 1–15 | Cite as

An Algorithm to Compute the Nucleolus of Shortest Path Games

  • Mourad Baïou
  • Francisco BarahonaEmail author
Article
  • 13 Downloads

Abstract

We study a type of cooperative games introduced in Fragnelli et al. (Math Methods Oper Res 52(2):251–264, 2000) called shortest path games. They arise on a network that has two special nodes s and t. A coalition corresponds to a set of arcs and it receives a reward if it can connect s and t. A coalition also incurs a cost for each arc that it uses to connect s and t, thus the coalition must choose a path of minimum cost among all the arcs that it controls. These games are relevant to logistics, communication, or supply-chain networks. We give a polynomial combinatorial algorithm to compute the nucleolus. This vector reflects the relative importance of each arc to ensure the connectivity between s and t.

Keywords

Cooperative games Shortest path games Nucleolus 

Notes

Acknowledgements

We are grateful to an anonymous referee for his careful reading. His comments helped us to improve the presentation. This work has been partially supported by the French government research program “Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01).

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Aziz, H., Sørensen, T.B.: Path coalitional games (2011). arXiv preprint arXiv:1103.3310
  3. 3.
    Baïou, M., Barahona, F.: On the nucleolus of shortest path games. In: Bilò, V., Flammini, M. (eds.) Algorithmic Game Theory, pp. 55–66. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  4. 4.
    Chvatal, V.: Linear Programming. Macmillan, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. J. Comb. Optim. 18(1), 64–86 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Elkind, E., Pasechnik, D.: Computing the nucleolus of weighted voting games. In: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 327–335. Society for Industrial and Applied Mathematics (2009)Google Scholar
  7. 7.
    Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost spanning tree games is np-hard. Int. J. Game Theory 27(3), 443–450 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fang, Q., Li, B., Shan, X., Sun, X.: The least-core and nucleolus of path cooperative games. In: International Computing and Combinatorics Conference, pp. 70–82. Springer (2015)Google Scholar
  9. 9.
    Fragnelli, V., Garcia-Jurado, I., Mendez-Naya, L.: On shortest path games. Math. Methods Oper. Res. 52(2), 251–264 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games 4(40), 47–85 (1959)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM (JACM) 36(4), 873–886 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Granot, D., Granot, F., Zhu, W.R.: Characterization sets for the nucleolus. Int. J. Game Theory 27(3), 359–374 (1998).  https://doi.org/10.1007/s001820050078 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small integral transit times. Networks 23(6), 567–574 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huberman, G.: The nucleolus and the essential coalitions. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and Optimization of Systems, pp. 416–422. Springer, Berlin (1980)CrossRefGoogle Scholar
  15. 15.
    Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced games. Oper. Res. 30(5), 998–1008 (1982)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28(2), 294–308 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person games. Technical Report, DTIC Document (1967)Google Scholar
  18. 18.
    Megiddo, N.: Computational complexity of the game theory approach to cost allocation for a tree. Math. Oper. Res. 3(3), 189–196 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow networks. Games Econ. Behav. 54(1), 205–225 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6), 1163–1170 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23(2), 119–143 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Solymosi, T., Sziklai, B.: Characterization sets for the nucleolus in balanced games. Oper. Res. Lett. 44(4), 520–524 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sziklai, B., Fleiner, T., Solymosi, T.: On the core and nucleolus of directed acyclic graph games. Math. Program. 163(1), 243–271 (2017).  https://doi.org/10.1007/s10107-016-1062-y MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS and Université Clermont AuvergneAubière CedexFrance
  2. 2.IBM T. J. Watson research CenterYorktown HeightsUSA

Personalised recommendations