Advertisement

Algorithmica

pp 1–22 | Cite as

A Unified Framework for Designing EPTAS for Load Balancing on Parallel Machines

  • Ishai Kones
  • Asaf LevinEmail author
Article
  • 16 Downloads

Abstract

We consider a general load balancing problem on parallel machines. Our machine environment in particular generalizes the standard models of identical machines, and the model of uniformly related machines, as well as machines with a constant number of types, and machines with activation costs. The objective functions that we consider contain in particular the makespan objective and the minimization of the \(\ell _p\)-norm of the vector of loads of the machines, and each case allows the possibility of job rejection. We consider this general model and design an efficient polynomial time approximation scheme (EPTAS) that applies for all its previously-studied special cases. This EPTAS improves the current best approximation scheme for some of these cases where only a polynomial time approximation scheme was known into an EPTAS.

Keywords

Approximation schemes Scheduling Load balancing 

Notes

References

  1. 1.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bansal, N., Pruhs, K.R.: Server scheduling to balance priorities, fairness, and average quality of service. SIAM J. Comput. 39(7), 3311–3335 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types (2012). arXiv:1205.0974
  5. 5.
    Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Inf. Process. Lett. 64(4), 165–171 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, L., Jansen, K., Zhang, G.: On the optimality of exact and approximation algorithms for scheduling problems. J. Comput. Syst. Sci. 96, 1–32 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Epstein, L., Levin, A.: An efficient polynomial time approximation scheme for load balancing on uniformly related machines. Math. Program. 147, 1–23 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Epstein, L., Levin, A.: Minimum total weighted completion time: faster approximation schemes (2014). arXiv:1404.1059
  10. 10.
    Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39(1), 43–57 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)zbMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  13. 13.
    Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling unrelated machines of few different types. In: Proceeding of the 42nd International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM’16), pp. 290–301 (2016)Google Scholar
  14. 14.
    Hochbaum, D.S.: Various notions of approximations: good, better, best and more. In: Hochbaum, D.S. (ed.) Approximation Algorithms. PWS Publishing Company, Boston (1997)Google Scholar
  15. 15.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jansen, K., Klein, K.-M., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP’16), vol. 72, pp. 1–13 (2016)Google Scholar
  19. 19.
    Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated machines of few different types. In: Proceedings of the 15th International Symposium on Algorithms and Data Structures (WADS’17), pp. 497–508 (2017)Google Scholar
  20. 20.
    Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated machines of few different types. CoRR (2017). arXiv:1701.03263 (v2)
  21. 21.
    Jansen, K., Maack, M., Rau, M.: Approximation schemes for machine scheduling with resource (in-)dependent processing times. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16), pp. 1526–1542 (2016)Google Scholar
  22. 22.
    Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of 15th Symposium on Theory of Computing (STOC), pp. 193–206. ACM (1983)Google Scholar
  23. 23.
    Khuller, S., Li, J., Saha, B.: Energy efficient scheduling via partial shutdown. In: Proceedings of 21st Symposium on Discrete Algorithms (SODA), pp. 1360–1372. ACM/SIAM (2010)Google Scholar
  24. 24.
    Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRefGoogle Scholar
  26. 26.
    Schuurman, P., Woeginger, G.J.: Approximation schemes—a tutorial (2001). http://www.win.tue.nl/~gwoegi/papers/ptas.pdf
  27. 27.
    Wiese, A., Bonifaci, V., Baruah, S.K.: Partitioned EDF scheduling on a few types of unrelated multiprocessors. Real-Time Syst. 49(2), 219–238 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Industrial Engineering and ManagementThe TechnionHaifaIsrael

Personalised recommendations