pp 1–30 | Cite as

When Can Graph Hyperbolicity be Computed in Linear Time?

  • Till FluschnikEmail author
  • Christian Komusiewicz
  • George B. Mertzios
  • André Nichterlein
  • Rolf Niedermeier
  • Nimrod Talmon


Hyperbolicity is a distance-based measure of how close a given graph is to being a tree. Due to its relevance in modeling real-world networks, hyperbolicity has seen intensive research over the last years. Unfortunately, the best known algorithms used in practice for computing the hyperbolicity number of an n-vertex graph have running time \(O(n^4)\). Exploiting the framework of parameterized complexity analysis, we explore possibilities for “linear-time FPT” algorithms to compute hyperbolicity. For example, we show that hyperbolicity can be computed in \(2^{O(k)} + O(n +m)\) time (where m and k denote the number of edges and the size of a vertex cover in the input graph, respectively) while at the same time, unless the Strong Exponential Time Hypothesis (SETH) fails, there is no \(2^{o(k)}\cdot n^{2-\varepsilon }\)-time algorithm for every \(\varepsilon >0\).


Parameterized complexity Polynomial-time algorithm FPT in P Strong Exponential Time Hypothesis Vertex cover number Cographs 



We are grateful to the anonymous reviewers of WADS’17 and Algorithmica for their comments. TF acknowledges support by the DFG, Projects DAMM (NI 369/13-2) and TORE (NI 369/18). CK acknowledges support by the DFG, Project MAGZ (KO 3669/4-1). GM acknowledges support by the EPSRC Grant EP/P020372/1. AN acknowledges support by a postdoctoral fellowship of the DAAD while at Durham University. NT acknowledges support by a postdoctoral fellowship from I-CORE ALGO.


  1. 1.
    Abboud, A., Vassilevska Williams, V., Wang, J. R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of 27th SODA, pp. 377–391. SIAM (2016)Google Scholar
  2. 2.
    Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an empirical study. Networks 67(1), 49–68 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bentert, M., Dittmann, A., Kellerhals, L., Nichterlein, A., Niedermeier, R.: Towards improving Brandes’ algorithm for betweenness centrality. arXiv:1802.06701 (2018). Extended abstract to appear in Proceedings of 29th ISAAC
  4. 4.
    Borassi, M., Coudert, D., Crescenzi, P., Marino, A.: On computing the hyperbolicity of real-world graphs. In: Proceedings of 23rd ESA, vol. 9294 of LNCS, pp. 215–226. Springer, Berlin (2015)CrossRefGoogle Scholar
  5. 5.
    Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci. 322, 51–67 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey, vol. 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM (1999)Google Scholar
  7. 7.
    Brinkmann, G., Koolen, J.H., Moulton, V.: On the hyperbolicity of chordal graphs. Ann. Combin. 5(1), 61–69 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cohen, N., Coudert, D., Lancin, A.: On computing the Gromov hyperbolicity. ACM J. Exp. Algoritm. 20, 1.6:1–1.6:18 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cohen, N., Coudert, D., Ducoffe, G., Lancin, A.: Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comput. Sci. 690, 114–139 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Coudert, D., Ducoffe, G.: Recognition of \(C_4\)-free and 1/2-hyperbolic graphs. SIAM J. Discrete Math. 28(3), 1601–1617 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In: Proceedings of 29th SODA, pp. 2765–2784. SIAM (2018)CrossRefGoogle Scholar
  14. 14.
    Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In: Proceedings of 16th WG, vol. 484 of LNCS, pp. 72–78. Springer, Berlin (1991)CrossRefGoogle Scholar
  15. 15.
    Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of the 37th MFCS, vol. 7464 of LNCS, pp. 348–359. Springer, Berlin (2012)CrossRefGoogle Scholar
  16. 16.
    Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci. 326(1–3), 57–67 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett. 115(6–8), 576–579 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  20. 20.
    Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. Theor. Comput. Sci. 689, 67–95 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, MSRI Publ., Vol. 8, pp. 75–263. Springer, New York (1987)CrossRefGoogle Scholar
  22. 22.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)CrossRefGoogle Scholar
  23. 23.
    Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Koolen, J.H., Moulton, V.: Hyperbolic bridged graphs. Eur. J. Combin. 23(6), 683–699 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduction for maximum matching. In: Proceedings of 42nd MFCS, vol. 83 of LIPIcs, pp. 46:1–46:14. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  28. 28.
    Mitsche, D., Pralat, P.: On the hyperbolicity of random graphs. Electr. J. Combin. 21(2), P2.39 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Upper Saddle River (1982)zbMATHGoogle Scholar
  30. 30.
    Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures. In: Proceedings of 25th SODA, pp. 1867–1877. SIAM (2014)Google Scholar
  31. 31.
    Williams, V.V., Wang, J.R., Williams, R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the 26th SODA, pp. 1671–1680. SIAM (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Till Fluschnik
    • 1
    Email author
  • Christian Komusiewicz
    • 2
  • George B. Mertzios
    • 3
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  • Nimrod Talmon
    • 4
  1. 1.Algorithmics and Computational Complexity, Fakultät IVTU BerlinBerlinGermany
  2. 2.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany
  3. 3.Department of Computer ScienceDurham UniversityDurhamUK
  4. 4.Ben-Gurion UniversityBeershebaIsrael

Personalised recommendations