pp 1–15 | Cite as

Parameterized Algorithms and Kernels for Rainbow Matching

  • Sushmita Gupta
  • Sanjukta Roy
  • Saket Saurabh
  • Meirav Zehavi


In this paper, we study the NP-complete colorful variant of the classical Matching problem, namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer k, this problem asks whether there exists a matching of size at least k such that all the edges in the matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow Matching on paths in time \(\mathcal{O}^\star \left( \left( \frac{1+\sqrt{5}}{2}\right) ^k\right) \) and polynomial space. This algorithm is based on a curious combination of the method of bounded search trees and a “divide-and-conquer-like” approach, where the branching process is guided by the maintenance of an auxiliary bipartite graph where one side captures “divided-and-conquered” pieces of the path. Our second result is a randomized algorithm that solves Rainbow Matching on general graphs in time \(\mathcal {O} ^\star (2^k)\) and polynomial-space. Here, we show how a result by Björklund et al. (J Comput Syst Sci 87:119–139, 2017) can be invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We also complement our two main results by designing kernels for Rainbow Matching on general and bounded-degree graphs.


Rainbow matching Parameterized algorithm Bounded search trees Divide-and-conquer 3-Set packing 3-Dimensional matching 



  1. 1.
    Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf. Process. Lett. 110, 621–624 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. J. Comput. Syst. Sci. 87, 119–139 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)CrossRefMATHGoogle Scholar
  4. 4.
    Dell, H., Marx, D.: Kernelization of packing problems. In: SODA’12 (2012)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
  6. 6.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, London (1979)MATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Itai, A., Rodeh, M., Tanimoto, S.L.: Some matching problems for bipartite graphs. J. ACM 25(4), 517–525 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs—a survey. Graphs Comb. 24(4), 237–263 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Le, V.B., Pfender, F.: Complexity results for rainbow matchings. Theor. Comput. Sci. 524, 27–33 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lovász, L., Plummer, M.D.: Matching Theory. American Mathematical Society, Providence (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|} |E|)\) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13–15 October 1980, pp. 17–27 (1980)Google Scholar
  16. 16.
    Ryser, H.J.: Neuere probleme der kombinatorik. In: Vorträge über Kombinatorik, pp. 69–91. Matematisches Forschungsinstitute, Oberwolfach (1967)Google Scholar
  17. 17.
    Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zehavi, M.: Mixing color coding-related techniques. In: Algorithms—ESA 2015—23rd Annual European Symposium, Patras, Greece, September 14–16, 2015, Proceedings, Volume 9294 of Lecture Notes in Computer Science, pp. 1037–1049 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BergenBergenNorway
  2. 2.The Institute of Mathematical SciencesHBNIChennaiIndia
  3. 3.Ben-Gurion UniversityBeershebaIsrael

Personalised recommendations