pp 1–47 | Cite as

Improved Parameterized Algorithms for Network Query Problems

  • Ron Y. Pinter
  • Hadas Shachnai
  • Meirav ZehaviEmail author


In the Partial Information Network Query (PINQ) problem, we are given a host graph H, and a pattern \({\mathcal {P}}\) whose topology is partially known. We seek a connected subgraph of H that resembles\({\mathcal {P}}\). PINQ is a generalization of Subgraph Isomorphism, where the topology of \({\mathcal {P}}\) is known, and Graph Motif, where the topology of \({\mathcal {P}}\) is unknown. This generalization addresses the major challenge of analyzing biological networks in the absence of certain topological data. In this paper, we use a non-standard hybridization of algebraic and combinatorial tools to develop an exact parameterized algorithm as well as an FPT-approximation scheme for PINQ.


Parameterized algorithm Narrow sieves Partial information network query Alignment network query Graph motif 



  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betzler, N., Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1296–1308 (2011)CrossRefGoogle Scholar
  3. 3.
    Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for graph motif problems. In: CPM, pp. 31–43 (2008)Google Scholar
  4. 4.
    Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182 (2010)Google Scholar
  5. 5.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. In: CoRR. arXiv:1007.1161 (2010)
  6. 6.
    Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS, pp. 20–31 (2013)Google Scholar
  7. 7.
    Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions networks using feedback vertex set. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(4), 628–635 (2010)CrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)CrossRefGoogle Scholar
  10. 10.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang, F.: Randomized divide-and-conquer: improved path, matching, and packing algorithms. SIAM J. Comput. 38(6), 2526–2547 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: CPM, pp. 388–401 (2011)Google Scholar
  14. 14.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: a tool for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fionda, V., Palopoli, L.: Biological network querying techniques: analysis and comparison. J. Comput. Biol. 18(4), 595–625 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  20. 20.
    Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Harvey, D., Roche, D.S.: An in-place truncated Fourier transform and applications to polynomial multiplication. In: ISSAC, pp. 325–329 (2010)Google Scholar
  22. 22.
    Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: ICALP, pp. 575–586 (2008)Google Scholar
  25. 25.
    Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett. 112(22), 889–892 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: ICALP, pp. 653–664 (2009)Google Scholar
  27. 27.
    Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)CrossRefGoogle Scholar
  28. 28.
    Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nederlof, J.: Fast polynomial-space algorithms using möbius inversion: improving on Steiner tree and related problems. In: ICALP, pp. 713–725 (2009)Google Scholar
  30. 30.
    Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)CrossRefGoogle Scholar
  31. 31.
    Pinter, R.Y., Zehavi, M.: Partial information network queries. In: IWOCA, pp. 362–275 (2013)Google Scholar
  32. 32.
    Pinter, R.Y., Zehavi, M.: Algorithms for topology-free and alignment network queries. J. Discrete Algorithms 27, 29–53 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction networks. BMC Bioinform. 7, 199 (2006)CrossRefGoogle Scholar
  35. 35.
    Sikora, F.: An (almost complete) State of the Art Around the Graph Motif Problem. Université Paris-Est Technical reports (2012)Google Scholar
  36. 36.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: EUROSAM, pp. 216–226 (1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations