Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

# Rank Reduction of Oriented Graphs by Vertex and Edge Deletions

## Abstract

In this paper we continue our study of graph modification problems defined by reducing the rank of the adjacency matrix of the given graph, and extend our results from undirected graphs to modifying the rank of skew-adjacency matrix of oriented graphs. An instance of a graph modification problem takes as input a graph G and a positive integer k, and the objective is to either delete k vertices/edges or edit k edges so that the resulting graph belongs to a particular family $$\mathcal{F}$$ of graphs. Given a fixed positive integer r, we define $$\mathcal{F}_r$$ as the family of oriented graphs where for each $$G\in \mathcal{F}_r$$, the rank of the skew-adjacency matrix of G is at most r. Using the family $$\mathcal{F}_r$$ we do algorithmic study, both in classical and parameterized complexity, of the following graph modification problems: $$r$$-Rank Vertex Deletion, $$r$$-Rank Edge Deletion. We first show that both the problems are NP-Complete. Then we show that these problems are fixed parameter tractable (FPT) by designing an algorithm with running time $$2^{\mathcal{O}(k \log r)}n^{\mathcal{O}(1)}$$ for $$r$$-Rank Vertex Deletion, and an algorithm for $$r$$-Rank Edge Deletion running in time $$2^{\mathcal{O}(f(r) \sqrt{k} \log k )}n^{\mathcal{O}(1)}$$. In addition to our FPT results we design polynomial kernels for these problems. Our main structural result, which is the fulcrum of all our algorithmic results, is that for a fixed integer r the size of any “reduced graph” in $$\mathcal{F}_r$$ is upper bounded by $$3^r$$. This result is of independent interest and generalizes a similar result of Kotlov and Lovász regarding reduced oriented graphs of rank r.

This is a preview of subscription content, log in to check access.

1. 1.

A sunflower with k petals and a core Y is a collection of sets $$S_1,\dots ,S_k$$ such that $$S_i\cap S_j =Y,$$ $$\forall i\ne j$$; the sets $$S_i \setminus Y$$ are called petals, and we require that none of the sets $$S_i$$ is empty.

## References

1. 1.

Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

2. 2.

Akbari, S., Cameron, P.J., Khosrovshahi, G.B.: Ranks and signatures of adjacency matrices (2004, preprint)

3. 3.

Bliznets, I., Cygan, M., Komosa, P., Mach, L., Pilipczuk, M.: Lower bounds for the parameterized complexity of minimum fill-in and other completion problems. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1132–1151. Society for Industrial and Applied Mathematics (2016)

4. 4.

Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for proper interval completion. SIAM J. Discret. Math. 29(4), 1961–1987 (2015)

5. 5.

Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: Subexponential parameterized algorithm for interval completion. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1116–1131. Society for Industrial and Applied Mathematics (2016)

6. 6.

Cao, Y.: Unit interval editing is fixed-parameter tractable. In: ICALP, vol. 9134, Lecture Notes in Computer Science, pp. 306–317. Springer (2015)

7. 7.

Cao, Y.: Linear recognition of almost interval graphs. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–1115. Society for Industrial and Applied Mathematics (2016)

8. 8.

Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), 21:1–21:35 (2015)

9. 9.

Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118–137 (2016)

10. 10.

Cavers, M., Cioabă, S., Fallat, S., Gregory, D., Haemers, W., Kirkland, S., McDonald, J., Tsatsomeros, M.: Skew-adjacency matrices of graphs. Linear Algebra Appl. 436(12), 4512–4529 (2012)

11. 11.

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

12. 12.

Damaschke, P., Mogren, O.: Editing the simplest graphs. In: WALCOM, pp. 249–260 (2014)

13. 13.

Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: ESA, vol. 9294, Lecture Notes in Computer Science, pp. 411–423. Springer (2015)

14. 14.

Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring the subexponential complexity of completion problems. ACM Trans Comput Theory (TOCT) 7(4), 14 (2015)

15. 15.

Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In: ESA, vol. 9294, Lecture Notes in Computer Science, pp. 424–436. Springer (2015)

16. 16.

Eves, H.W.: Elementary Matrix Theory. Courier Corporation, North Chelmsford (1966)

17. 17.

Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430–1447 (2014)

18. 18.

Fomin, F. V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approximation, kernelization and optimal FPT algorithms. In: FOCS (2012)

19. 19.

Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)

20. 20.

Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret. Appl. Math. 86, 213–231 (1998)

21. 21.

Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)

22. 22.

Hoffman, K., Kunze, R.: Linear Algebra. Englewood Cliffs, Bergen (1971)

23. 23.

Jukna, S.: Extremal Combinatorics: with Applications in Computer Science. Springer Science & Business Media, Berlin (2011)

24. 24.

Kotlov, A., Lovász, L.: The rank and size of graphs. J. Graph Theory 23(2), 185–189 (1996)

25. 25.

Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

26. 26.

Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994)

27. 27.

Mahajan, M., Sarma, J.: On the complexity of matrix rank and rigidity. Theory Comput. Syst. 46(1), 9–26 (2010)

28. 28.

Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)

29. 29.

Meesum, S., Misra, P., Saurabh, S.: Reducing rank of the adjacency matrix by graph modification. Theor. Comput. Sci. 654, 70–79 (2016)

30. 30.

Peeters, R.: The maximum edge biclique problem is NP-complete. Discret. Appl. Math. 131(3), 651–654 (2003)

31. 31.

Qu, H., Yu, G.: Bicyclic oriented graphs with skew-rank 2 or 4. Appl. Math. Comput. 258, 182–191 (2015)

32. 32.

Sigler, L.: Algebra. In: Undergraduate Texts in Mathematics. Springer (1976)

33. 33.

Yannakakis, M.: Node and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp. 253–264. ACM (1978)

## Author information

Correspondence to Syed M. Meesum.