Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improved Algorithms for Maximum Agreement and Compatible Supertrees

  • 118 Accesses

  • 5 Citations

Abstract

Consider a set of labels L and a set of unordered trees \(\mathcal{T}=\{\mathcal{T}^{(1)},\mathcal{T}^{(2)},\ldots ,\allowbreak \mathcal{T}^{(k)}\}\) where each tree \(\mathcal{T}^{(i)}\) is distinctly leaf-labeled by some subset of L. One fundamental problem is to find the biggest tree (denoted as supertree) to represent \(\mathcal{T}\) which minimizes the disagreements with the trees in \(\mathcal{T}\) under certain criteria. In this paper, we focus on two particular supertree problems, namely, the maximum agreement supertree problem (MASP) and the maximum compatible supertree problem (MCSP). These two problems are known to be NP-hard for k≥3. This paper gives improved algorithms for both MASP and MCSP. In particular, our results imply the first polynomial time algorithms for both MASP and MCSP when both k and the maximum degree D of the input trees are constant.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms. SIAM J. Comput. 26(6), 1656–1669 (1997)

  2. 2.

    Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. In: Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM 2004). Lecture Notes in Computer Science, vol. 3109, pp. 205–219. Springer, Berlin (2004)

  3. 3.

    Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand (1997)

  4. 4.

    Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An O(nlog n) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput. 30(5), 1385–1404 (2000)

  5. 5.

    Farach, M., Thorup, M.: Fast comparison of evolutionary trees. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pp. 481–488 (1994)

  6. 6.

    Farach, M., Thorup, M.: Sparse dynamic programming for evolutionary-tree comparison. SIAM J. Comput. 26(1), 210–230 (1997)

  7. 7.

    Farach, M., Przytycka, T., Thorup, M.: On the agreement of many trees. Inf. Process. Lett. 55, 297–301 (1995)

  8. 8.

    Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Classif. 2, 255–276 (1985)

  9. 9.

    Ganapathysaravanabavan, G., Warnow, T.: Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In: Proceedings of the 1st Workshop on Algorithms in Bioinformatics (WABI 2001). Lecture Notes in Computer Science, vol. 2149, pp. 156–163. Springer, Berlin (2001)

  10. 10.

    Gordon, A.G.: Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labelled leaves. J. Classif. 3, 335–348 (1986)

  11. 11.

    Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement supertree problem. In: Proceedings of the 18th Annual Symposium on Combinatorial Pattern Matching (CPM 2007). Lecture Notes in Computer Science, vol. 4580, pp. 274–285. Springer, Berlin (2007)

  12. 12.

    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math. 71, 153–169 (1996)

  13. 13.

    Hoang, V.T., Sung, W.-K.: Fixed parameter polynomial time algorithms for maximum agreement and compatible supertrees. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 361–372. Dagstuhl, Germany (2008). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany

  14. 14.

    Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. Algorithmica 43, 293–307 (2005)

  15. 15.

    Kao, M.-Y.: Tree contractions and evolutionary trees. SIAM J. Comput. 27(6), 1592–1616 (1998)

  16. 16.

    Kao, M.-Y., Lam, T.-W., Przytycka, T., Sung, W.-K., Ting, H.-F.: General techniques for comparing unrooted evolutionary trees. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC’97), pp. 54–65 (1997)

  17. 17.

    Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. J. Algorithms 40(2), 212–233 (2001)

  18. 18.

    Maddison, D.R., Schulz, K.-S. (eds.): The tree of life web project. Internet address: http://tolweb.org (1996–2006)

  19. 19.

    Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105(1–3), 147–158 (2000)

  20. 20.

    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9(1), 91–116 (1992)

  21. 21.

    Steel, M., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Inf. Process. Lett. 48, 77–82 (1993)

Download references

Author information

Correspondence to Wing-Kin Sung.

Additional information

An extended abstract of this article has appeared in “Fixed parameter polynomial time algorithms for maximum agreement and compatible supertrees”, Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 361–372 [13].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoang, V.T., Sung, W. Improved Algorithms for Maximum Agreement and Compatible Supertrees. Algorithmica 59, 195–214 (2011). https://doi.org/10.1007/s00453-009-9303-6

Download citation

Keywords

  • Phylogenetic tree
  • Suptree
  • Maximum agreement supertree
  • Maximum compatible supertree