Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Deciding k-Colorability of P 5-Free Graphs in Polynomial Time

Abstract

The problem of computing the chromatic number of a P 5-free graph (a graph which contains no path on 5 vertices as an induced subgraph) is known to be NP-hard. However, we show that for every fixed integer k, there exists a polynomial-time algorithm determining whether or not a P 5-free graph admits a k-coloring, and finding one, if it does.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bacsó, G., Tuza, Z.: Dominating cliques in P 5-free graphs. Period. Math. Hung. 21(4), 303–308 (1990)

  2. 2.

    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

  3. 3.

    Diestel, R.: Graph Theory, electronic edn. (2005)

  4. 4.

    de Werra, D., Kobler, D.: Graph coloring: foundations and applications. RAIRO Oper. Res. 37, 29–66 (2003)

  5. 5.

    Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. J. Assoc. Comput. Mach. 19, 400–410 (1972)

  6. 6.

    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum coloring by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)

  7. 7.

    Giakoumakis, V., Rusu, I.: Weighted parameters in \((P_{5},\overline{P}_{5})\) -free graphs. Discrete Appl. Math. 80, 255–261 (1997)

  8. 8.

    Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math. 21, 325–356 (1984)

  9. 9.

    Hayward, R., Hoàng, C.T., Maffray, F.: Optimizing weakly triangulated graphs. Graphs Comb. 5, 339–349 (1989)

  10. 10.

    Hoàng, C.T., Sawada, J., Wang, Z.: Colorability of P 5-free graphs. Manuscript (2005)

  11. 11.

    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)

  12. 12.

    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

  13. 13.

    Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number. Combinatorica 20, 393–415 (2000)

  14. 14.

    Korobitsyn, D.V.: On the complexity of determining the domination number in monogenic classes of graphs. Diskret. Mat. 2(3), 90–96 (1990) (in Russian); translation in Discrete Math. Appl. 2(2), 191–199 (1992)

  15. 15.

    Kral, D., Kratochvil, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: WG 2001. Lecture Notes in Computer Science, vol. 2204, pp. 254–262. Springer, Berlin (2001)

  16. 16.

    Bang Le, V., Randerath, B., Schiermeyer, I.: Two remarks on coloring graphs without long induced paths. Report No. 7/2006 (Algorithmic Graph Theory), Mathematisches Forschungsinstitut Oberwolfach

  17. 17.

    Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Math. 162, 313–317 (1996)

  18. 18.

    Randerath, B., Schiermeyer, I.: Vertex coloring and forbidden subgraphs—a survey. Graphs Comb. 20(1), 1–40 (2004)

  19. 19.

    Randerath, B., Schiermeyer, I.: 3-colorability ∈℘ for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)

  20. 20.

    Randerath, B., Schiermeyer, I., Tewes, M.: Three-colorability and forbidden subgraphs, II: polynomial algorithms. Discrete Math. 251, 137–153 (2002)

  21. 21.

    Sgall, J., Woeginger, G.J.: The complexity of coloring graphs without long induced paths. Acta Cybern. 15(1), 107–117 (2001)

Download references

Author information

Correspondence to Chính T. Hoàng.

Additional information

C.T. Hoàng’s and J. Sawada’s research supported by NSERC.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoàng, C.T., Kamiński, M., Lozin, V. et al. Deciding k-Colorability of P 5-Free Graphs in Polynomial Time. Algorithmica 57, 74–81 (2010). https://doi.org/10.1007/s00453-008-9197-8

Download citation

Keywords

  • Graph coloring
  • Dominating clique
  • Polynomial-time algorithm
  • P5-free graph