Advertisement

Power measurement techniques for energy-efficient computing: reconciling scalability, resolution, and accuracy

  • Thomas IlscheEmail author
  • Robert Schöne
  • Joseph Schuchart
  • Daniel Hackenberg
  • Marc Simon
  • Yiannis Georgiou
  • Wolfgang E. Nagel
Special Issue Paper

Abstract

The rising concern for power consumption of large-scale computer systems puts a research focus on the respective measurement methods. Varying workload patterns and energy efficiency optimizations cause highly dynamic power consumption on today’s compute nodes—a challenge for every measurement infrastructure. We identify five partly contradictory requirements that characterize such infrastructures: temporal granularity, spatial granularity, well-defined accuracy, scalability, and cost. In two projects we push the boundaries for these criteria: a scalable measurement solution for hundreds of nodes at millisecond granularity that is tightly integrated into the HPC system, and a sophisticated single-node instrumentation to measure the power consumption of application events in the microsecond range. Both measurement solutions are calibrated and their accuracy is carefully studied. We discuss scalable processing of the measurements for global monitoring in large-scale systems and use this data for energy efficiency analyses in combination with contextual information such as application performance trace data.

Keywords

HAEC HDEEM Power measurement Verification Energy efficiency 

Notes

Acknowledgements

This work is supported in parts by the German Research Foundation (DFG) in the Collaborative Research Center 912 “Highly Adaptive Energy-Efficient Computing”, the Bundesministerium für Bildung und Forschung via the research project Score-E (BMBF 01IH13001), and Bull/Atos in the joint project “High Definition Energy Efficiency Monitoring” (HDEEM). The authors would like to thank Robin Geyer for his contribution on the HDEEM verification and Mario Bielert for improvements on the paper layout.

References

  1. 1.
    Knobloch M, Foszczynski M, Homberg W, Pleiter D, Böttiger H (2013) Mapping fine-grained power measurements to HPC application runtime characteristics on IBM POWER7. Comput Sci Res Dev 29:211–219CrossRefGoogle Scholar
  2. 2.
    Fourestey G, Cumming B, Gilly L, Schulthess TC (2014) First experiences with validating and using the cray power management database tool. CoRRGoogle Scholar
  3. 3.
    Hackenberg D, Ilsche T, Schöne R, Molka D, Schmidt M, Nagel WE (2013) Power measurement techniques on standard compute nodes: a quantitative comparison. In: 2013 IEEE international symposium on performance analysis of systems and software (ISPASS)Google Scholar
  4. 4.
    Hackenberg D, Schöne R, Ilsche T, Molka D, Schuchart J, Geyer R (2015) An energy efficiency feature survey of the intel haswell processor. In: Parallel and distributed processing symposium workshop (IPDPSW), 2015 IEEE internationalGoogle Scholar
  5. 5.
    Ge R, Feng X, Song S, Chang HC, Li D, Cameron KW (2010) PowerPack: energy profiling and analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst (TPDS).  https://doi.org/10.1109/TPDS.2009.76 Google Scholar
  6. 6.
    Laros III JH, Pokorny P, Debonis D (2013) PowerInsight—a commodity power measurement capability. In: International green computing conference (IGCC).  https://doi.org/10.1109/IGCC.2013.6604485
  7. 7.
    Bedard D, Lim MY, Fowler R, Porterfield A (2010) PowerMon: fine-grained and integrated power monitoring for commodity computer systems. In: IEEE SoutheastCon.  https://doi.org/10.1109/SECON.2010.5453824
  8. 8.
    Dolz MF, Heidari MR, Kuhn M, Ludwig T, Fabregat G, ARDUPOWER: a low-cost wattmeter to improve energy efficiency of HPC applications. In: Sixth international green and sustainable computing conference (IGSC).  https://doi.org/10.1109/IGCC.2015.7393692
  9. 9.
    Sandia National Laboratories, Power API specification, Std., Sep 2015. [Online]. Available: http://powerapi.sandia.gov/docs/PowerAPI_SAND.pdf
  10. 10.
    Almeida F, Arteaga J, Blanco V, Cabrera A (2015) Energy measurement tools for ultrascale computing: a survey. Supercomput Front Innov 2(2). [Online]. Available: http://superfri.org/superfri/article/view/45
  11. 11.
    Ilsche T, Hackenberg D, Graul S, Schuchart J, Schöne R (Dec 2015) Power measurements for compute nodes: Improving sampling rates, granularity and accuracy. In: 2015 sixth international green and sustainable computing conference (IGSC), ser. sixth international green and sustainable computing conference, IGSCGoogle Scholar
  12. 12.
    Hackenberg D, Ilsche T, Schuchart J, Schöne R, Nagel WE, Simon M, Georgiou Y (2014) Hdeem: high definition energy efficiency monitoring. In: International workshop on energy efficient supercomputing (E2SC). IEEE PressGoogle Scholar
  13. 13.
    HDEEM library reference guide. http://www.bull.com/download-hdeem-library-reference-guide, Bull Atos Technologies, Tech. Rep., 2016
  14. 14.
    Kluge M, Hackenberg D, Nagel WE (2012) Collecting distributed performance data with dataheap: generating and exploiting a holistic system view. Procedia Comput Sci 9:1969–1978CrossRefGoogle Scholar
  15. 15.
    Knüpfer A, Rössel C, Mey D, Biersdorff S, Diethelm K, Eschweiler D, Geimer M, Gerndt M, Lorenz D, Malony A, Nagel WE, Oleynik Y, Philippen P, Saviankou P, Schmidl D, Shende S, Tschüter R, Wagner M, Wesarg B, Wolf F (2012) Score-P: a joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Brunst H, Müller MS, Nagel WE, Resch MM (eds) Tools for high performance computing 2011. Springer, Berlin Heidelberg, pp 79–91CrossRefGoogle Scholar
  16. 16.
    Georgiou Y, Cadeau T, Glesser D, Auble D, Jette M, Hautreux M (2014) Energy accounting and control with slurm resource and job management system. In: Chatterjee M, Cao J-n, Kothapalli K, Rajsbaum S (eds) Distributed computing and networking. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 96–118CrossRefGoogle Scholar
  17. 17.
    Hackenberg D, Oldenburg R, Molka D, Schöne R (2013) Introducing FIRESTARTER: a processor stress test utilityGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Ilsche
    • 1
    Email author
  • Robert Schöne
    • 1
  • Joseph Schuchart
    • 2
  • Daniel Hackenberg
    • 1
  • Marc Simon
    • 3
  • Yiannis Georgiou
    • 3
  • Wolfgang E. Nagel
    • 1
  1. 1.Center for Information Services and High Performance Computing (ZIH)Technische Universität DresdenDresdenGermany
  2. 2.High Performance Computing Center Stuttgart (HLRS)University of StuttgartStuttgartGermany
  3. 3.BULL SASLes ClayesFrance

Personalised recommendations