Advertisement

In situ synthesis of polypyrrole on graphite felt as bio-anode to enhance the start-up performance of microbial fuel cells

  • Kai-Bo Pu
  • Chuan-Xu Lu
  • Kai Zhang
  • He Zhang
  • Qing-Yun Chen
  • Yun-Hai WangEmail author
Research Paper

Abstract

Abstract

This study introduces an effective method to deposit polypyrrole (PPy) on graphite felt (GF) as anode to improve the start-up performance of microbial fuel cells (MFCs). The results of scanning electron microscope (SEM) and electrochemical testing reveal that polypyrrole is able to improve the electrical conductivity and surface roughness, which is beneficial to the microorganism attachment and growth. It shows that microorganisms grow faster on polypyrrole-modified anode than on unmodified anode. It takes ca. 5 days for polypyrrole-modified anode to reach a reproducible voltage platform, while it takes 11 days for unmodified anode. Moreover, the maximum power density of microbial fuel cells with polypyrrole-modified anode was 919 mW m−2, which were 2.3 times of that with unmodified anode. This research revealed that polypyrrole modification can improve the start-up performance of microbial fuel cells. It is considered as a feasible, economical and sustainable anode.

Graphic abstract

Article highlights

  • Polypyrrole was deposited on graphite via in situ electrochemical polymerization.

  • The start-up time with PPy/GF anode was half less than that with GF anode.

  • The power output with PPy/GF anode was 2.3 times higher than that with GF anode.

Keywords

Start-up Graphite felt Anode modification PPy Microorganisms 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (nos. 21878242 and 21828802).

Compliance with ethical standards

Conflict of interest

The authors certify that there is no conflict of interest with any individual/organization for the present work.

References

  1. 1.
    Modin O, Wang X, Wu X, Rauch S, Fedje KK (2012) Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J Hazard Mater 235:291–297PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Cai W, Fang X, Xu M, Liu X, Wang Y (2015) Sequential recovery of copper and nickel from wastewater without net energy input. Water Sci Technol 71:754–760PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Paitier A, Godain A, Lyon D, Haddour N, Vogel TM, Monier J (2017) Microbial fuel cell anodic microbial population dynamics during MFC start-up. Biosens Bioelectron 92:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sourc 196:8293–8300CrossRefGoogle Scholar
  6. 6.
    Hutchinson AJ, Tokash JC, Logan BE (2011) Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J Power Sourc 196:9213–9219CrossRefGoogle Scholar
  7. 7.
    Fu G, Liao K, Huang Z, Liu M (2014) Start-up performance of microbial fuel cells for purifying high salt concentration organic wastewater. Chin J Chem Eng 8:5259–5263Google Scholar
  8. 8.
    Shin J, Seo S, Maitlo HA, Park J (2015) The enhancement of ammonium removal from ethanolamine wastewater using air-cathode microbial fuel cells coupled to ferric reduction. Bioresour Technol 190:466–473PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Xiao Y, Wu S, Yang Z, Wang Z, Yan C, Zhao F (2013) In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere 93:1295–1300PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Zheng Y, Xiao Y, Yang Z, Wu S, Xu H, Liang F, Zhao F (2014) The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs. Process Biochem 49:1345–1351CrossRefGoogle Scholar
  11. 11.
    Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biol 78:409–418CrossRefGoogle Scholar
  12. 12.
    Sun D, Call DF, Kiely PD, Wang A, Logan BE (2012) Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnol Bioeng 109:405–414PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44:6036–6041PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Qu Y, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by geobacter sulfurreducens. Appl Environ Microb 78:3484–3487CrossRefGoogle Scholar
  15. 15.
    More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresour Technol 101:562–567PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu G, Yates MD, Cheng S, Call DF, Sun D, Logan BE (2011) Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresour Technol 102:7301–7306PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang C, Chen Y, Hu Z, Chong W (2017) Dynamic power response of microbial fuel cells under external electrical exciting. Int J Hydrogen Energ 42:22208–22213CrossRefGoogle Scholar
  20. 20.
    Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43:9519–9524PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wei J, Liang P, Cao X, Huang X (2010) A new insight into potential regulation on growth and power generation of geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ Sci Technol 44:3187–3191PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gao C, Wang A, Wu W, Yin Y, Zhao Y (2014) Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresour Technol 167:124–132PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dumas C, Basseguy R, Bergel A (2008) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53:5235–5241CrossRefGoogle Scholar
  26. 26.
    Chae K, Choi M, Lee J, Kim K, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biol 77:393–402CrossRefGoogle Scholar
  28. 28.
    Wang A, Sun D, Ren N, Liu C, Liu W, Logan BE, Wu W (2010) A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresour Technol 101:5733–5735PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yin Y, Huang G, Tong Y, Liu Y, Zhang L (2013) Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field. J Power Sourc 237:58–63CrossRefGoogle Scholar
  30. 30.
    Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496CrossRefGoogle Scholar
  32. 32.
    Zhang G, Zhao Q, Jiao Y, Zhang J, Jiang J, Ren N, Kim BH (2011) Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. J Power Sourc 196:6036–6041CrossRefGoogle Scholar
  33. 33.
    You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells 9:588–596CrossRefGoogle Scholar
  34. 34.
    Pu K, Ma Q, Cai W, Chen Q, Wang Y, Li F (2018) Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J 132:255–261CrossRefGoogle Scholar
  35. 35.
    Wang C, Huang R, Lee Y, Zhang C (2013) Electrode material of carbon nanotube/polyaniline carbon paper applied in microbial fuel cells. J Clean Energ Technol 1:206–210CrossRefGoogle Scholar
  36. 36.
    Mashkour M, Rahimnejad M, Mashkour M (2016) Bacterial cellulose-polyaniline nano-biocomposite: a porous media hydrogel bioanode enhancing the performance of microbial fuel cell. J Power Sourc 325:322–328CrossRefGoogle Scholar
  37. 37.
    Ma Q, Pu K, Cai W, Wang Y, Chen Q, Li F (2018) Characteristics of poly(3,4-ethylenedioxythiophene) modified stainless steel as anode in air-cathode microbial fuel cells. Ind Eng Chem Res 57:6633–6638CrossRefGoogle Scholar
  38. 38.
    Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506CrossRefGoogle Scholar
  39. 39.
    Niessen J, Schröder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575CrossRefGoogle Scholar
  40. 40.
    Chen Y, Wang C, Yang Y, Chen W (2013) Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell. Int J Hydrogen Energ 38:11131–11137CrossRefGoogle Scholar
  41. 41.
    Wang C, Sangeetha T, Ding D, Chong W, Yan W (2018) Implementation of surface modified carbon cloth electrodes with biochar particles in microbial fuel cells. Int J Green Energy 15:789–794CrossRefGoogle Scholar
  42. 42.
    Kumar GG, Kirubaharan CJ, Udhayakumar S, Karthikeyan C, Nahm KS (2014) Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Ind Eng Chem Res 53:16883–16893CrossRefGoogle Scholar
  43. 43.
    Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J, Tang W (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52CrossRefGoogle Scholar
  44. 44.
    Jiang H, Halverson L, Dong L (2015) A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm. J Micromech Microeng 25:1–15Google Scholar
  45. 45.
    Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sourc 97–98:812–815CrossRefGoogle Scholar
  46. 46.
    Laforgue A, Simon P, Sarrazin C, Fauvarque J (1999) Polythiophene-based supercapacitors. J Power Sourc 80:142–148CrossRefGoogle Scholar
  47. 47.
    Abruña HD, Kiya Y, Henderson JC (2008) Batteries and electrochemical capacitors. Phys Today 61:43–47CrossRefGoogle Scholar
  48. 48.
    Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Edit 115:2986–2989CrossRefGoogle Scholar
  49. 49.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54:1109–1114CrossRefGoogle Scholar
  51. 51.
    Busalmen JP, Esteve-Nuñez A, Feliu JM (2008) Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ Sci Technol 42:2445–2450PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai-Bo Pu
    • 1
  • Chuan-Xu Lu
    • 1
  • Kai Zhang
    • 2
  • He Zhang
    • 1
  • Qing-Yun Chen
    • 2
  • Yun-Hai Wang
    • 1
    Email author
  1. 1.Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations