Advertisement

Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum

  • Yuanchao Xu
  • Kailin Jiao
  • Huichang Zhong
  • Shengshan Wu
  • Shih-Hsin Ho
  • Xianhai ZengEmail author
  • Jinglong Li
  • Xing Tang
  • Yong Sun
  • Lu Lin
Research Paper

Abstract

Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference value to the large-scale production of PE.

Keywords

Porphyridium purpureum Induced cultivation pattern Biomass Phycoerythrin 

Notes

Acknowledgements

We are grateful for funding supported by the special fund for Fujian Ocean High Tech Industry Development (No. FJHJF-L-2018-1), China, the Natural Science Foundation of Fujian Province of China (No. 2019J06005), and the Energy development Foundation of the College of Energy, Xiamen University (Grant No. 2017NYFZ02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Glazer AN (1994) Phycobiliproteins-a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112CrossRefGoogle Scholar
  2. 2.
    Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  3. 3.
    Spolaore P, Joanniscassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  4. 4.
    Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209CrossRefGoogle Scholar
  5. 5.
    Pumas C, Peerapornpisal Y, Vacharapiyasophon P, Leelapornpisid P, Khanongnuch C (2012) Purification and characterization of a thermostable phycoerythrin from hot spring cyanobacterium Leptolyngbya sp. KC45. Int J Agric Biol 14:1560–8530Google Scholar
  6. 6.
    Voznesenskiy SS, Popik AY, Gamayunov EL, Orlova TY, Markina ZV, Postnova IV, Shchipunov YA (2018) Erratum to: One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. Eur Biophys J 47:87–87CrossRefGoogle Scholar
  7. 7.
    Peng K, Li J, Jiao KL, Zeng XH, Lin L, Pan SW, Danquah MK (2018) The bioeconomy of microalgal biofuels. Energy from Microalgae. Springer, ChamCrossRefGoogle Scholar
  8. 8.
    Jiao KL, Chang JY, Zeng XH, Xiao ZY, Sun Y, Tang X, Lin L (2017) 5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnol Biofuels 10:168–177CrossRefGoogle Scholar
  9. 9.
    Huang B, Wang GC, Zeng CK, Li ZG (2002) The experimental research of R-phycoerythrin subunits on cancer treatment: a new photosensitizer in PDT. Cancer Biother Radiol 17:35–42Google Scholar
  10. 10.
    Teiten M-H, Marchal S, D’Hallewin MA, François G, Bezdetnaya L (2003) Primary photodamage sites and mitochondrial events after Foscan® photosensitization of MCF-7 human breast cancer cells. Photochem Photobiol 78:9–14CrossRefGoogle Scholar
  11. 11.
    Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of Porphyridium. Biomass 8:13–25CrossRefGoogle Scholar
  12. 12.
    Brody M, Emerson R (1959) The effect of wavelength and intensity of light on the proportion of pigments in Porphyridium cruentum. Am J Bot 46:433–440CrossRefGoogle Scholar
  13. 13.
    Golueke CG, Oswald WJ (1962) The mass culture of Porphyridium cruentum. Appl Microbiol 10:102–107PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jaime F, Digna G, Morales E, Adolfo D, Otero A (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. J Ferment Bioeng 86:477–481CrossRefGoogle Scholar
  15. 15.
    Fuentes-Grünewald C, Bayliss C, Zanain M, Pooley C, Scolamacchia M, Silkina A (2015) Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresour Technol 189:357–363CrossRefGoogle Scholar
  16. 16.
    Kathiresan S, Sarada R, Bhattacharya S, Ravishankar GA (2007) Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol Bioeng 96:456–463CrossRefGoogle Scholar
  17. 17.
    Wang J, Chen BL, Rao X, Huang J, Li M (2007) Optimization of culturing conditions of Porphyridium cruentum using uniform design. World J Microb Biotechnol 23:1345–1350CrossRefGoogle Scholar
  18. 18.
    Guihéneuf Freddy, Stengel DB (2015) Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res 10:152–163CrossRefGoogle Scholar
  19. 19.
    Jiao KL, Xiao WP, Xu YC, Zeng XH, Ho SH, Laws EA, Lu YH, Ling XP, Shi T, Sun Y, Tang X, Lin L (2018) Using a trait-based approach to optimize mixotrophic growth of the red microalga Porphyridium purpureum towards fatty acid production. Biotechnol Biofuels 11:273–283CrossRefGoogle Scholar
  20. 20.
    Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red algae Porphyridium cruentum. Physiol Plant 16:636–643CrossRefGoogle Scholar
  21. 21.
    Su GM, Jiao KL, Li Z, Guo XY, Chang JY, Ndikubwimana T, Sun Y, Zeng XH, Lu Y, Lin L (2016) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 39:1129–1136CrossRefGoogle Scholar
  22. 22.
    Moxley G, Zhang YHP (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels 21:3684–3688CrossRefGoogle Scholar
  23. 23.
    Cheng CL, Chang JS (2011) Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol 102:8628–8634CrossRefGoogle Scholar
  24. 24.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchonic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  25. 25.
    Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (2000) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 12:99CrossRefGoogle Scholar
  26. 26.
    Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792CrossRefGoogle Scholar
  27. 27.
    Adda M, Merchuk JC, Arad S (1986) Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131–140CrossRefGoogle Scholar
  28. 28.
    Cohen Z, Vonshak A, Richmond A (1987) The effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum. The Metabolism, Structure, and Function of Plant Lipids. Springer, BostonCrossRefGoogle Scholar
  29. 29.
    Zeng XH, Danquah MK, Chen XD, Lu YH (2011) Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252–3260CrossRefGoogle Scholar
  30. 30.
    Huu PTN, Michèle M, Joël F, Justine D (2016) Mastocarpus stellatus as a source of R-phycoerythrin: optimization of enzyme assisted extraction using response surface methodology. J Appl Phycol 29(3):1563–1570Google Scholar
  31. 31.
    Mathilde M, Michèle M, Justine D, Pascal J, Joël F (2015) One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B 992:23–29CrossRefGoogle Scholar
  32. 32.
    Liu LN, Chen XL, Zhang XY, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116(1):91–100CrossRefGoogle Scholar
  33. 33.
    Fuentes MMR, Fernández GGA, Pérez JAS, Guerrero JLG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70(3):345–353CrossRefGoogle Scholar
  34. 34.
    Justine D, Nathalie C, Michèle M, Joël F (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27CrossRefGoogle Scholar
  35. 35.
    Dupre C, Guary JC, Grizeau D (1995) Culture of an autoflocculent microalga in a vertical tubular photobioreactor for phycoerythrin production. Biotechnol Techn 9(3):185–190CrossRefGoogle Scholar
  36. 36.
    Nesrine G, Ines K, Jihen E, Salem E, Phillipe M, Slim A, Céline L, Imen F (2018) Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: a powerful agent in industrial applications. Int J Biol Macromol 120:2106–2114CrossRefGoogle Scholar
  37. 37.
    Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret JP, Annick MM, Benoit S (2012) The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol 13:2733–2750CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuanchao Xu
    • 1
  • Kailin Jiao
    • 2
  • Huichang Zhong
    • 3
  • Shengshan Wu
    • 2
  • Shih-Hsin Ho
    • 4
  • Xianhai Zeng
    • 2
    • 5
    Email author
  • Jinglong Li
    • 1
  • Xing Tang
    • 2
    • 4
  • Yong Sun
    • 2
    • 4
  • Lu Lin
    • 2
    • 4
  1. 1.College of Biological EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.College of EnergyXiamen UniversityXiamenChina
  3. 3.Xiamen Huison Biotech Co., Ltd.XiamenChina
  4. 4.State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  5. 5.Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-valued Utilization for BiomassXiamen UniversityXiamenChina

Personalised recommendations