Advertisement

Comparison of bacterial community structure and function under different petroleum hydrocarbon degradation conditions

  • Jiaqi Cui
  • Hong Chen
  • Mingbo Sun
  • Jianping WenEmail author
Research Paper
  • 25 Downloads

Abstract

Bioremediation methods have been successfully applied to the removal of organic pollutants for decades, but the responses of the microbial community to environmental factors remain less well known. In this work, the degradation rates of petroleum hydrocarbons (PHs) reached up to 50.11% ± 2.74% after optimizing the degradation conditions. Under the influence of the optimized degradation conditions, the diversity of the bacterial community gradually increased. Meanwhile, the dominant bacterial genera, encompassing Burkholderia-Paraburkholderia, Luteibacter, and Acinetobacter, remained stable. Moreover, statistical analysis indicated that the genera Bacterium, Burkholderia-Paraburkholderia, Luteibacter, and Acinetobacter contributed the most to PHs degradation. Additionally, the functional modules of amino acid metabolism, carbohydrate metabolism, as well as global and overview maps played a vital role in the metabolization of PHs. Therefore, understanding the changes of the microbial community structure and function can provide valuable guidance to further improve the degradation rate of organic waste via bioremediation methods.

Keywords

Petroleum hydrocarbons Activated sludge Bacterial community structure Bacterial community function Bioremediation 

Notes

Acknowledgements

This work was supported by the China Petroleum & Chemical Corporation (Sinopec Corp) [No. 33050000-17-ZC0609-0001].

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

449_2019_2227_MOESM1_ESM.docx (294 kb)
Supplementary file1 (DOCX 294 kb)

References

  1. 1.
    Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Bioremediat J 12(2):70–87CrossRefGoogle Scholar
  2. 2.
    Debajyoti G, Shreya G, Dutta TK, Youngho A (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369Google Scholar
  3. 3.
    Desforges JW, Sonne C, Levin M, Siebert U, Guise SD, Dietz R (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139CrossRefGoogle Scholar
  4. 4.
    Varjani SJ, Srivastava VK (2015) Green technology and sustainable development of environment. Renew Energy 3(1):244–249Google Scholar
  5. 5.
    Qin W, Zhu Y, Fan F, Wang Y, Liu X, Ding A, Dou J (2017) Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: degradation pathway and effects of limiting electron acceptors or carbon source. Biochem Eng J 121:131–138CrossRefGoogle Scholar
  6. 6.
    Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308CrossRefGoogle Scholar
  7. 7.
    Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63(2):417–431CrossRefGoogle Scholar
  8. 8.
    Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221CrossRefGoogle Scholar
  9. 9.
    Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490CrossRefGoogle Scholar
  10. 10.
    Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151CrossRefGoogle Scholar
  11. 11.
    Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants-perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55(1):1–8CrossRefGoogle Scholar
  12. 12.
    Ahmad AA, Marie-Laure JG, Monzer H, Marie K (2016) Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 7:49Google Scholar
  13. 13.
    Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67CrossRefGoogle Scholar
  14. 14.
    Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286CrossRefGoogle Scholar
  15. 15.
    Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397CrossRefGoogle Scholar
  16. 16.
    Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Tech Bull 8:163–178CrossRefGoogle Scholar
  17. 17.
    Wu M, Dick WA, Li M, Wang X, Yang Q, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 201:158–164CrossRefGoogle Scholar
  18. 18.
    Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K (2014) Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 21:217–227CrossRefGoogle Scholar
  19. 19.
    Foght JM, Westlake DWS, Johnson WM, Ridgway HF (1996) Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142:2333–2340CrossRefGoogle Scholar
  20. 20.
    Varjani SJ, Upasani VN (2017) Crude oil degradation by Pseudomonas aeruginosa NCIM 5514: influence of process parameters. Indian J Exp Biol 55:493–497Google Scholar
  21. 21.
    Ortega-González DK, Cristiani-Urbina E, Flores-Ortíz CM, Cruz-Maya JA, Jan-Roblero J (2014) Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Appl Biochem Biotechnol 175(2):1123–1138CrossRefGoogle Scholar
  22. 22.
    Saunders AM, Mads A, Jes V, Nielsen PH (2016) The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10:11–20CrossRefGoogle Scholar
  23. 23.
    Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26(1–3):92–118CrossRefGoogle Scholar
  24. 24.
    Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int Biodeterior Biodegrad 126:45–56CrossRefGoogle Scholar
  25. 25.
    Pedros-Alio C (2006) Marine microbial diversity: can it be determined. Trends Microbiol 14(6):257–263CrossRefGoogle Scholar
  26. 26.
    Jiang XT, Ye L, Ju F, Li B, Ma LP, Zhang T (2018) Temporal dynamics of activated sludge bacterial communities in two diversity variant full-scale sewage treatment plants. Appl Microbiol Biotechnol 102:9379–9388CrossRefGoogle Scholar
  27. 27.
    Kim BC, Kim S, Shin T, Kim H, Sang BI (2013) Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A2O process using pyrosequencing analysis. Curr Microbiol 66(6):555–565CrossRefGoogle Scholar
  28. 28.
    Jiang Y, Wei L, Zhang H, Yang K, Wang H (2016) Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. Bioresour Technol 218:146–152CrossRefGoogle Scholar
  29. 29.
    Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291CrossRefGoogle Scholar
  30. 30.
    Bagchi S, Tellez BG, Rao HA, Lamendella R, Saikaly PE (2015) Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time. Appl Microbiol Biotechnol 99:2361–2370CrossRefGoogle Scholar
  31. 31.
    Korzeniewska E, Harnisz M (2018) Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Sci Total Environ 639(15):304–315CrossRefGoogle Scholar
  32. 32.
    Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  2. 2.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Sinopec Engineering Group Luoyang R&D Center of TechnologyHenanPeople’s Republic of China

Personalised recommendations