Advertisement

Increased cellulose production by heterologous expression of bcsA and B genes from Gluconacetobacterxylinus in E. coli Nissle 1917

  • Elaheh Sajadi
  • Seyed Safa-Ali Fatemi
  • Valiollah BabaeipourEmail author
  • Ali Asghar Deldar
  • Bagher Yakhchali
  • Mohammad Saberi Anvar
Research Paper
  • 58 Downloads

Abstract

Based on cellulose biosynthesis pathway of Gluconacetobacterxylinus BPR2001 and E. coli Nissle 1917, bcsA and bcsB genes have been selected and bioinformatics studies done to the analyses of nucleotide and amino acid sequence alignment, stability of RNA, protein, and promotor power. We amplify and clone bcsA, bcsB, and bcsAB genes of G. xylinus BPR2001 in Escherichiacoli Nissle 1917 under the inducible tac promoter. Our results of bioinformatics predictions demonstrate similar active site and three-dimensional structure of BcsA and BcsB proteins in two different bacteria. In addition, our data reveal that BcsA and BcsB proteins of E. coli have weaker promotor power, RNA secondary structure, and protein stability than that of the same proteins in G. xylinus. Some of the reasons of BcsAB protein selection from G. xylinus and its heterologous expression in E. coli is the noted points. Production of the related proteins visualized using SDS-PAGE. We find out that Congo red absorbance at 490 nm has no significant difference in wild-type strain (E. coli Nissle 1917) compared to recombinants bcsA+ or bcsB+, but recombinant bcsAB+ could produce more cellulose than that of the wild-type strain. Furthermore, the measurement of cellulose dry weights of all samples confirms bacterial cellulose production enhancement in recombinant bcsAB+ (1.94 g l−1). The FTIR analysis reveals that the crystallinity indices do not change significantly after over expressing each of genes.

Keywords

Bacterial cellulose bcsAB Escherichiacoli nissle 1917 FTIR Gluconacetobacterxylinus 

Notes

Compliance with ethical standards

Conflict of interest

All of authors declare that they do not have any conflict of interest.

Supplementary material

449_2019_2197_MOESM1_ESM.docx (144 kb)
Supplementary file1 (DOCX 143 kb)

References

  1. 1.
    Ebrahimi E, Babaeipour V, Khanchezar S (2016) Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose. Iran Polym J.  https://doi.org/10.1007/s13726-016-0462 Google Scholar
  2. 2.
    Meftahi A, Nasrollahi D, Babaeipour V, Alibakhshi S, Sahbazi S (2015) Investigation of nano bacterial cellulose coated by sesamum oil for wound dressing application. Proced Mater Sci.  https://doi.org/10.1016/j.mspro.2015.11.109 Google Scholar
  3. 3.
    Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol.  https://doi.org/10.1016/S0923-2508(02)01316-5 Google Scholar
  4. 4.
    Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol.  https://doi.org/10.1007/s12010-014-0795-4 Google Scholar
  5. 5.
    Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T, Munekata M, Takai M (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res.  https://doi.org/10.1093/dnares/9.5.149 Google Scholar
  6. 6.
    Lee KY, Buldum G, Mantalari A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci.  https://doi.org/10.1002/mabi.201300298 Google Scholar
  7. 7.
    Omadjela O, Narahari A, Strumillo J, Mélid H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesssis. Proc Natl Acad Sci USA 110:17856–17861CrossRefGoogle Scholar
  8. 8.
    Saxena IM, Kudlicka K, Okuda K, Brown JRM (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752CrossRefGoogle Scholar
  9. 9.
    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425Google Scholar
  10. 10.
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol.  https://doi.org/10.1046/j.1365-2958.2001.02337.x Google Scholar
  11. 11.
    Takai MM (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res.  https://doi.org/10.1093/dnares/9.5.149 Google Scholar
  12. 12.
    Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol.  https://doi.org/10.1016/j.tim.2015.05.005 Google Scholar
  13. 13.
    Sajadi E, Babaipour V, Deldar AA, Yakhchali B, Fatemi SSA (2017) Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus. Biotechnol Lett.  https://doi.org/10.1007/s10529-017-2366-6 Google Scholar
  14. 14.
    Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signaling system. Mol Microbiol.  https://doi.org/10.1111/j.1365-2958.2005.04697.x Google Scholar
  15. 15.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics.  https://doi.org/10.1093/bioinformatics/bti739 Google Scholar
  16. 16.
    Fritsch E, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York, pp 94–109Google Scholar
  17. 17.
    Seo EJ, Weibel S, Wehkamp J, Oelschlaeger TA (2012) Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. Int J Med Microbiol.  https://doi.org/10.1016/j.ijmm.2012.05.002 Google Scholar
  18. 18.
    Pulicherla KK, Kumar A, Gadupudi GS, Kotra SR, Rao KR (2013) In vitro characterization of a multifunctional staphylokinase variant with reduced reocclusion, produced from salt inducible E. coli GJ1158. Biomed Res Int.  https://doi.org/10.1155/2013/297305 Google Scholar
  19. 19.
    Da Re S, Ghigo JM (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol.  https://doi.org/10.1128/JB.188.8.3073-3087.2006 Google Scholar
  20. 20.
    Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose producing Acetobacter strains suitable for agitation culture. Biosci Biotechnol Biochem.  https://doi.org/10.1271/bbb.59.1498 Google Scholar
  21. 21.
    Nobles DR, Brown R (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose.  https://doi.org/10.1007/s10570-008-9217-5 Google Scholar
  22. 22.
    Nobles DR, Brown R (2007) Many paths up the mountain: tracking the evolution of cellulose biosynthesis in cellulose. Mol Struct Biol.  https://doi.org/10.1007/978-1-4020-5380-1_1 Google Scholar
  23. 23.
    Ryjenkov DA, Simm R, Romling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem.  https://doi.org/10.1074/jbc.C600179200 Google Scholar
  24. 24.
    Lin FC, Brown RMJ (1989) Purification of cellulose synthase from Acetobacterxylinum. In: Schuerch C (ed) Cellulose and wood chemistry and technology. Wiley, New York, pp 473–492Google Scholar
  25. 25.
    Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exo polysaccharide production. Mol Microbiol.  https://doi.org/10.1111/j.1365-2958.2007.05879.x Google Scholar
  26. 26.
    Wong HC, Feara L, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci 87:8130–8134.  https://doi.org/10.1073/pnas.87.20.8130 CrossRefGoogle Scholar
  27. 27.
    Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Nonlinear Optic Phys.  https://doi.org/10.12691/jmpc-2-1-1 Google Scholar
  28. 28.
    Sessler TH (2014) Bacterial cellulose in cyanobacteria: enhancement of cellulose production in Synechococcus elongatus with Gluconacetobacter xylinus transgenes. Dissertation, University of Texas at AustinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elaheh Sajadi
    • 1
  • Seyed Safa-Ali Fatemi
    • 1
  • Valiollah Babaeipour
    • 2
    Email author
  • Ali Asghar Deldar
    • 2
  • Bagher Yakhchali
    • 1
  • Mohammad Saberi Anvar
    • 1
  1. 1.Department of Systems Biotechnology, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran
  2. 2.Department of Bioscience and Biotechnology, Faculty of Chemistry and Chemical EngineeringMalek Ashtar University of TechnologyTehranIran

Personalised recommendations