Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization

  • Mustafa Germec
  • Irfan TurhanEmail author
Research Paper


Inulinases are used for the production of high-fructose syrup and fructooligosaccharides, and are widely utilized in food and pharmaceutical industries. In this study, different carbon sources were screened for inulinase production by Aspergillus niger in shake flask fermentation. Optimum working conditions of the enzyme were determined. Additionally, some properties of produced enzyme were determined [activation (Ea)/inactivation (Eia) energies, Q10 value, inactivation rate constant (kd), half-life (t1/2), D value, Z value, enthalpy (ΔH), free energy (ΔG), and entropy (ΔS)]. Results showed that sugar beet molasses (SBM) was the best in the production of inulinase, which gave 383.73 U/mL activity at 30 °C, 200 rpm and initial pH 5.0 for 10 days with 2% (v/v) of the prepared spore solution. Optimum working conditions were 4.8 pH, 60 °C, and 10 min, which yielded 604.23 U/mL, 1.09 inulinase/sucrase ratio, and 2924.39 U/mg. Additionally, Ea and Eia of inulinase reaction were 37.30 and 112.86 kJ/mol, respectively. Beyond 60 °C, Q10 values of inulinase dropped below one. At 70 and 80 °C, t1/2 of inulinase was 33.6 and 7.2 min; therefore, inulinase is unstable at high temperatures, respectively. Additionally, t1/2, D, ΔH, ΔG values of inulinase decreased with the increase in temperature. Z values of inulinase were 7.21 °C. Negative values of ΔS showed that enzymes underwent a significant process of aggregation during denaturation. Consequently, SBM is a promising carbon source for inulinase production by A. niger. Also, this is the first report on the determination of some properties of A. niger A42 (ATCC 204,447) inulinase.


Inulinase Sucrose Aspergillus niger Activation energy Thermal inactivation Thermodynamics 



This study was supported by the Akdeniz University Research Foundation [Grant number: FDK-2019-4761].

Compliance with ethical standards

Conflict of interest

All the authors in this study mutually agree for submitting our manuscript to Biochemical Engineering Journal and declare that they have no conflict of interest in the publication.


  1. 1.
    Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27:703–714CrossRefGoogle Scholar
  2. 2.
    Ronkart S, Blecker C, Fougnies C, Van Herck J, Wouters J, Paquot M (2006) Determination of physical changes of inulin related to sorption isotherms: An X-ray diffraction, modulated differential scanning calorimetry and environmental scanning electron microscopy study. Carbohyd Polym 63:210–217CrossRefGoogle Scholar
  3. 3.
    Chi Z-M, Zhang T, Cao T-S, Liu X-Y, Cui W, Zhao C-H (2011) Biotechnological potential of inulin for bioprocesses. Biores Technol 102:4295–4303CrossRefGoogle Scholar
  4. 4.
    Singh RS, Chauhan K, Kennedy JF (2016) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322CrossRefGoogle Scholar
  5. 5.
    Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44:151–162Google Scholar
  6. 6.
    Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases. Appl Biochem Biotechnol 81:35–52CrossRefGoogle Scholar
  7. 7.
    Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176CrossRefGoogle Scholar
  8. 8.
    Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212CrossRefGoogle Scholar
  9. 9.
    Ohta K, Akimoto H, Moriyama S (2004) Fungal inulinases: enzymology, molecular biology and biotechnology. J Appl Glycosci 51:247–254CrossRefGoogle Scholar
  10. 10.
    Singh R, Singh R (2017) Inulinases. In: Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, Amsterdam, pp 423–446CrossRefGoogle Scholar
  11. 11.
    Singh RS, Chauhan K, Pandey A, Larroche C, Kennedy JF (2018) Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. Int J Biol Macromol 118:1974–1983CrossRefGoogle Scholar
  12. 12.
    Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Biores Technol 101:5290–5296CrossRefGoogle Scholar
  13. 13.
    Ongen-Baysal G, Sukan SS, Vassilev N (1994) Production and properties of inulinase from Aspergillus niger. Biotech Lett 16:275–280CrossRefGoogle Scholar
  14. 14.
    Cemeroğlu B (2015) Reaksiyon kinetiği. Bizim Grup Basımevi, AnkaraGoogle Scholar
  15. 15.
    Pal A, Khanum F (2011) Characterizing and improving the thermostability of purified xylanase from Aspergillus niger DFR-5 grown on solid-state-medium. J Biochem Technol 2:203–209Google Scholar
  16. 16.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  17. 17.
    Bender JP, Mazutti MA, de Oliveira D, Di Luccio M, Treichel H (2006) Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation. Appl Biochem Biotechnol 132:951–958CrossRefGoogle Scholar
  18. 18.
    Kalil S, Suzan R, Mougeri F, Rodrigues M (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  20. 20.
    Ettalibi M, Baratti JC (1987) Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Appl Microbiol Biotechnol 26:13–20CrossRefGoogle Scholar
  21. 21.
    de Oliveira Lino FS, Basso TO, Sommer MOA (2018) A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels 11:221CrossRefGoogle Scholar
  22. 22.
    Demirci A, Öziyci HR, Karhan M, Turkenburg JP (2014) Fermentasyon besiyeri. In: Turhan I (ed) Endüstriyel mikrobiyolojiye giriş. Palme Yayıncılık, AnkaraGoogle Scholar
  23. 23.
    Yuan X-L, Goosen C, Kools H, van der Maarel MJEC, van den Hondel CAMJJ, Dijkhuizen L, Ram AFJ (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073CrossRefGoogle Scholar
  24. 24.
    Grootwassink JWD, Hewitt GM (1983) Inducible and constitutive formation of -fructofuranosidase (inulase) in batch and continuous cultures of the yeast Kluyveromyces fragilis. Microbiology 129:31–41CrossRefGoogle Scholar
  25. 25.
    Dinarvand M, Ariff BA, Moeini H, Masomian M, Mousavi SS, Nahavandi R, Mustafa S (2012) Effect of extrinsic and intrinsic parameters on inulinase production by Aspergillus niger ATCC 20611. Electron J Biotechnol 15:5Google Scholar
  26. 26.
    Saber W, El-Naggar NE (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 8:425–433CrossRefGoogle Scholar
  27. 27.
    Makino Y, Treichel H, Mazutti MA, Maugeri F, Rodrigues MI (2009) Inulinase bio-production using agroindustrial residues: screening of microorganisms and process parameters optimization. J Chem Technol Biotechnol 84:1056–1062CrossRefGoogle Scholar
  28. 28.
    Shuler ML, Kargi F, DeLisa M (2017) Bioprocess engineering: basic concepts, 3rd edn. Prentice Hall Upper Saddle River, NJGoogle Scholar
  29. 29.
    Li Q, Coffman AM, Ju L-K (2015) Development of reproducible assays for polygalacturonase and pectinase. Enzyme Microbial Technol 72:42–48CrossRefGoogle Scholar
  30. 30.
    Silva MF, Rigo D, Mossi V, Dallago RM, Henrick P, de Oliveira Kuhn G, Dalla Rosa C, Oliveira D, Oliveira JV, Treichel H (2013) Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod Process 91:54–59CrossRefGoogle Scholar
  31. 31.
    Poorna V, Kulkarni P (1995) A study of inulinase production in Aspergillus niger using fractional factorial design. Biores Technol 54:315–320CrossRefGoogle Scholar
  32. 32.
    Yewale T, Singhal RS, Vaidya AA (2013) Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatal Agric Biotechnol 2:96–101CrossRefGoogle Scholar
  33. 33.
    Laowklom N, Chantanaphan R, Pinphanichakarn P (2012) Production, purification and characterization of inulinase from a newly isolated Streptomyces sp. CP01. Nat Resour 3:137Google Scholar
  34. 34.
    Naidoo K, Ayyachamy M, Permaul K, Singh S (2009) Enhanced fructooligosaccharides and inulinase production by a Xanthomonas campestris pv. phaseoli KM 24 mutant. Bioprocess Biosyst Eng 32:689–695CrossRefGoogle Scholar
  35. 35.
    Sheng J, Chi Z, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144:111–121CrossRefGoogle Scholar
  36. 36.
    Sheng J, Chi Z, Yan K, Wang X, Gong F, Li J (2009) Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid-state fermentation and hydrolysis of inulin. Bioprocess Biosyst Eng 32:333–339CrossRefGoogle Scholar
  37. 37.
    Canli O, Tasar GE, Taskin M (2013) Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicol Ind Health 29:704–710CrossRefGoogle Scholar
  38. 38.
    Liu G-L, Fu G-Y, Chi Z, Chi Z-M (2014) Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129–9138CrossRefGoogle Scholar
  39. 39.
    Singh R, Dhaliwal R, Puri M (2006) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem 41:1703–1707CrossRefGoogle Scholar
  40. 40.
    Jain SC, Jain P, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using Dahlia tuber extract. Braz J Microbiol 43:62–69CrossRefGoogle Scholar
  41. 41.
    Kalil SJ, Suzan R, Maugeri F, Rodrigues MI (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264CrossRefGoogle Scholar
  42. 42.
    Gong F, Sheng J, Chi Z, Li J (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol 34:179–185CrossRefGoogle Scholar
  43. 43.
    Silva-Santisteban BOY, Converti A, Maugeri Filho F (2009) Effects of carbon and nitrogen sources and oxygenation on the production of inulinase by Kluyveromyces marxianus. Appl Biochem Biotechnol 152:249–261CrossRefGoogle Scholar
  44. 44.
    Gou Y, Li J, Zhu J, Xu W, Gao J (2015) Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions. Braz J Microbiol 46:911–920CrossRefGoogle Scholar
  45. 45.
    Gong F, Zhang T, Chi Z, Sheng J, Li J, Wang X (2008) Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnol Bioprocess Eng 13:533–539CrossRefGoogle Scholar
  46. 46.
    Yuan B, Hu N, Sun J, Wang S-A, Li F-L (2012) Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Appl Microbiol Biotechnol 96:1517–1526CrossRefGoogle Scholar
  47. 47.
    Zhou J, Peng M, Zhang R, Li J, Tang X, Xu B, Ding J, Gao Y, Ren J, Huang Z (2015) Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase. Extremophiles 19:383–393CrossRefGoogle Scholar
  48. 48.
    Hu N, Yuan B, Sun J, Wang S-A, Li F-L (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95:1359–1368CrossRefGoogle Scholar
  49. 49.
    Wang D, Li F-L, Wang S-A (2016) Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Biotechnol Biofuels 9:96. CrossRefGoogle Scholar
  50. 50.
    Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World J Microbiol Biotechnol 23:543–552CrossRefGoogle Scholar
  51. 51.
    Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels 8:1CrossRefGoogle Scholar
  52. 52.
    Chen G-J, Yang J-K, Peng X-B, He J-R (2016) High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin. J Mol Catal B Enzym 133:S543–S551CrossRefGoogle Scholar
  53. 53.
    Torabizadeh H, Habibi-Rezaei M, Safari M, Moosavi-Movahedi AA, Sharifizadeh A, Azizian H, Amanlou M (2011) Endo-inulinase stabilization by pyridoxal phosphate modification: a kinetics, thermodynamics, and simulation approach. Appl Biochem Biotechnol 165:1661–1673CrossRefGoogle Scholar
  54. 54.
    Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Biores Technol 97:894–902CrossRefGoogle Scholar
  55. 55.
    Flores-Gallegos AC, Contreras-Esquivel JC, CbN Aguilar (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119:421–426CrossRefGoogle Scholar
  56. 56.
    Tanaka A, Hoshino E (2002) Calcium-binding parameter of Bacillus amyloliquefaciens α-amylase determined by inactivation kinetics. Biochem J 364:635–639CrossRefGoogle Scholar
  57. 57.
    Marin E, Sanchez L, Perez M, Puyol P, Calvo M (2003) Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. J Food Sci 68:89–93CrossRefGoogle Scholar
  58. 58.
    Anema SG, McKenna AB (1996) Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. J Agric Food Chem 44:422–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food EngineeringAkdeniz UniversityAntalyaTurkey

Personalised recommendations