Biotransformation of phenolic compounds by Bacillus aryabhattai

  • Alicia Paz
  • Iván Costa-Trigo
  • Francisco Tugores
  • Montserrat Míguez
  • Julia de la Montaña
  • José Manuel DomínguezEmail author
Research Paper


Phenolic compounds could pose environmental problems if they are in excess, although they could be a renewable resource of substances with industrial interest. The novel strain Bacillus aryabhattai BA03 is able to produce high-added value metabolites from different phenolic compounds such as vanillin, 4-vinylguaiacol and 4-vinylphenol while inducing ligninolytic enzymes such as laccases (Lac) and lignin peroxidases (LiP). In comparison with the medium without inducers, the presence of 500 mg/L caffeic acid improved 9.1-fold times the expression of Lac (0.118 ± 0.004 U/mL) and 5.8-fold times the expression of LiP (2.300 ± 0.053 U/mL), just as these processes exhibited high global rates of biotransformation. When isoeugenol, ferulic acid or p-coumaric acid are in the media, the strain removed more than 90% of these compounds, secreting vanillin, 4-vinylguaiacol or 4-vinylphenol. Bacillus aryabhattai proved to be an appropriate tool for the removal of several phenolic compounds and the production of more valuable products.


Bacillus aryabhattai Phenolic compounds Laccases Peroxidases Biotransformation 



The authors are grateful to the Spanish Ministry of Economy and Competitiveness for financial support of this research (project CTQ2015-71436-C2-1-R), which has partial funding from the FEDER funds of the European Union; and to the Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria), for Alicia Pérez Paz’s postdoctoral fellowship ED481B 2018/073. This study forms part of the activities of the Group with Potential for Growth (ED431B 2018/54-GPC), the Xunta de Galicia (Spain).

Compliance with ethical standards

Conflict of interest

No conflict of interest declared.


  1. 1.
    Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, NetherlandsGoogle Scholar
  2. 2.
    Araújo M, Pimentel FB, Alves RC, Oliveira MBPP (2015) Phenolic compounds from olive mill wastes: health effects, analytical approach and application as food antioxidants. Trends Food Sci Technol 45:200–211CrossRefGoogle Scholar
  3. 3.
    Costa DC, Costa HS, Albuquerque TG et al (2015) Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci Technol 45:336–354CrossRefGoogle Scholar
  4. 4.
    Kietkwanboot A, Tran HTM, Suttinun O (2015) Simultaneous dephenolization and decolorization of treated palm oil mill effluent by oil palm fiber-immobilized Trametes hirsuta strain AK 04. Water Air Soil Pollut 226:345CrossRefGoogle Scholar
  5. 5.
    Gauri SS, Mandal SM, Dey S, Pati BR (2012) Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81. Bioresour Technol 126:350–353CrossRefGoogle Scholar
  6. 6.
    Saha S, Badhe N, Pal S et al (2017) Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol. Biochem Eng J 126:40–49CrossRefGoogle Scholar
  7. 7.
    Dzionek A, Wojcieszynska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36CrossRefGoogle Scholar
  8. 8.
    Dermeche S, Nadour M, Larroche C et al (2013) Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem 48:1532–1552CrossRefGoogle Scholar
  9. 9.
    Xu P, Hua D, Ma C (2007) Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 25:571–576CrossRefGoogle Scholar
  10. 10.
    Berger RG (2015) Biotechnology as a source of natural volatile flavours. Curr Opin Food Sci 1:38–43CrossRefGoogle Scholar
  11. 11.
    Falade AO, Nwodo UU, Iweriebor BC et al (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:1–14CrossRefGoogle Scholar
  12. 12.
    Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym 101:56–66CrossRefGoogle Scholar
  13. 13.
    Paramjeet S, Manasa P, Korrapati N (2018) Biofuels: production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatal Agric Biotechnol 14:57–71CrossRefGoogle Scholar
  14. 14.
    Siroosi M, Amoozegar MA, Khajeh K (2016) Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. J Mol Catal B Enzym 134:89–97CrossRefGoogle Scholar
  15. 15.
    Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249CrossRefGoogle Scholar
  16. 16.
    Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250CrossRefGoogle Scholar
  17. 17.
    Paz A, Outeiriño D, de Souza Pinheiro, Oliveira R, Domínguez JM (2018) Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol 40:186–191CrossRefGoogle Scholar
  18. 18.
    Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22CrossRefGoogle Scholar
  19. 19.
    de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119CrossRefGoogle Scholar
  20. 20.
    Margot J, Bennati-Granier C, Maillard J et al (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63CrossRefGoogle Scholar
  21. 21.
    Fernandes Rigamonte Alves T, Batista Da Silveira W, Lopes Passos FM, Zucchi TD (2014) Laccases from actinobacteria—What we have and What to expect. Adv Microbiol 4:285–296CrossRefGoogle Scholar
  22. 22.
    Catherine H, Penninckx M, Frédéric D (2016) Product formation from phenolic compounds removal by laccases: a review. Environ Technol Innov 5:250–266CrossRefGoogle Scholar
  23. 23.
    Chang YC, Choi DB, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436CrossRefGoogle Scholar
  24. 24.
    Tian JH, Pourcher AM, Klingelschmitt F et al (2016) Class P dye-decolorizing peroxidase gene: degenerated primers design and phylogenetic analysis. J Microbiol Methods 130:148–153CrossRefGoogle Scholar
  25. 25.
    Asina FNU, Brzonova I, Kozliak E et al (2017) Microbial treatment of industrial lignin: successes, problems and challenges. Renew Sustain Energy Rev 77:1179–1205CrossRefGoogle Scholar
  26. 26.
    Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342CrossRefGoogle Scholar
  27. 27.
    De Souza CGM, Tychanowicz GK, De Souza DF, Peralta RM (2004) Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J Basic Microbiol 44:129–136CrossRefGoogle Scholar
  28. 28.
    Elisashvili V, Kachlishvili E, Khardziani T, Agathos SN (2010) Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. J Ind Microbiol Biotechnol 37:1091–1096CrossRefGoogle Scholar
  29. 29.
    Ansari Z, Karimi A, Ebrahimi S, Emami E (2016) Improvement in ligninolytic activity of Phanerochaete chrysosporium cultures by glucose oxidase. Biochem Eng J 105:332–338CrossRefGoogle Scholar
  30. 30.
    Zacchi L, Burla G, Zuolong D, Harvey PJ (2000) Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. J Biotechnol 78:185–192CrossRefGoogle Scholar
  31. 31.
    Kapich AN, Prior BA, Botha A et al (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb Technol 34:187–195CrossRefGoogle Scholar
  32. 32.
    Paz A, Carballo J, Pérez MJ, Domínguez JM (2016) Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol 32:159CrossRefGoogle Scholar
  33. 33.
    Lemos M, Borges A, Teodósio J et al (2014) The effects of ferulic and salicylic acids on Bacillus cereus and Pseudomonas fluorescens single- and dual-species biofilms. Int Biodeterior Biodegradation 86:42–51CrossRefGoogle Scholar
  34. 34.
    Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2012) Conversion of isoeugenol to vanillin by Psychrobacter sp. Strain CSW4. Appl Biochem Biotechnol 166:1–12CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Xu P, Han S et al (2006) Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol 73:771–779CrossRefGoogle Scholar
  36. 36.
    Zhao LQ, Sun ZH, Zheng P, He JY (2006) Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem 41:1673–1676CrossRefGoogle Scholar
  37. 37.
    Hua D, Ma C, Lin S et al (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130:463–470CrossRefGoogle Scholar
  38. 38.
    Zhao L, Xie Y, Chen L et al (2018) Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol–gel chitosan membrane. Process Biochem 71:76–81CrossRefGoogle Scholar
  39. 39.
    Patil ND, Tanguy NR, Yan N (2015) Lignin interunit linkages and model compounds. In: Lignin in Polymer Composites. William Andrew Publishing, Elsevier, pp 27–47Google Scholar
  40. 40.
    Chen Z, Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev 73:610–621CrossRefGoogle Scholar
  41. 41.
    Sainsbury PD, Hardiman EM, Ahmad M et al (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156CrossRefGoogle Scholar
  42. 42.
    Max B, Torrado AM, Moldes AB et al (2009) Ferulic acid and p-coumaric acid solubilization by alkaline hydrolysis of the solid residue obtained after acid prehydrolysis of vine shoot prunings: effect of the hydroxide and pH. Biochem Eng J 43:129–134CrossRefGoogle Scholar
  43. 43.
    Salgado JM, Rodríguez-Solana R, Curiel JA et al (2014) Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase extractive fermentation using free or immobilized recombinant E. coli expressing pad gene. Enzyme Microb Technol 58–59:22–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alicia Paz
    • 1
  • Iván Costa-Trigo
    • 1
  • Francisco Tugores
    • 2
  • Montserrat Míguez
    • 3
  • Julia de la Montaña
    • 3
  • José Manuel Domínguez
    • 1
    Email author
  1. 1.Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering DepartmentUniversity of Vigo (Campus Ourense)OurenseSpain
  2. 2.Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Mathematical DepartmentUniversity of Vigo (Campus Ourense)OurenseSpain
  3. 3.Nutrition and Bromatology Area, Department of Analytical and Food ChemistryUniversity of Vigo (Campus Ourense)OurenseSpain

Personalised recommendations