Enhanced production of triacylglycerols and polyunsaturated fatty acids in novel acid-tolerant mutants of the green microalga Chlorella saccharophila

  • Jalsen Iván Teco-Bravo
  • Luis Felipe Barahona-Pérez
  • Carlos Francisco Reyes-Sosa
  • Ángela Francisca Ku-González
  • Virginia Aurora Herrera-ValenciaEmail author
  • Santy Peraza-EcheverriaEmail author
Research Paper


In this study, the microalga Chlorella saccharophila was subjected to ultraviolet (UV) mutagenesis, and mutant screening was conducted based on acidity tolerance to generate mutants with increased triacylglycerol (TAG) and polyunsaturated fatty acid (PUFA) contents. Two improved mutant strains (M1 and M5) were generated. M1 and M5 accumulated 27.2% and 27.4% more TAG, respectively, and showed stronger fluorescence intensity than the wild-type (WT) strain when the cells of these mutants were stained with the lipophilic Nile Red stain. In the M1 mutant, 50.5% of the fatty acid methyl esters (FAMEs) were saturated (C16:0 and C18:0) and 25.27% were monounsaturated (C18:1) fatty acids which are suitable for biofuels production. In the M5 mutant, 65.19% of the total FAMEs were nutritional PUFAs (C16:2, C18:2, and C18:3), while these FAMEs were not detected in the WT. These results demonstrated that UV mutagenesis coupled to an acid pH screening strategy represents a valuable and fast platform to generate mutants of C. saccharophila with improved TAG and PUFA contents for biofuels and nutraceutical applications, respectively.


Microalga Chlorella saccharophila Mutagenesis Acid pH Triacylglycerol PUFAs 



This study was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT México) Project no. 169217. Jalsen Iván Teco Bravo received support from CONACYT (scholarship no. 404430). The authors thank Ileana C. Borges Argáez, Tanit Toledano Thompson and Fray Martin Baas Espinola for technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have not conflict of interest.

Supplementary material

449_2019_2153_MOESM1_ESM.tif (5.7 mb)
Supplementary Fig. 1 Comparison of the tolerance to acidity between the WT and mutant strains on a pH gradient plate. A) Control plate; only the WT strain was inoculated. B-F) The WT and mutant strains were streaked on the same pH gradient plate. Approximately 1x105 WT and mutagenized cells were streaked on the gradient in the direction from the acid to alkaline region (TIFF 5889 kb)
449_2019_2153_MOESM2_ESM.tif (8.2 mb)
Supplementary Fig. 2 Growth patterns observed with the WT and mutant strains of C. saccharophila on pH gradient agar plates. Approximately 4x107 cells were spread over the surface (TIFF 8373 kb)
449_2019_2153_MOESM3_ESM.tif (3.1 mb)
Supplementary Fig. 3 Lipid content of the WT and mutant strains of C. saccharophila at pH 6 and 7. A) Lipid extract in mg L-1 culture; B) Lipid content as a percentage of dry biomass weight (% DBW). Cells were incubated in 50 mL of TAP medium adjusted to the indicated pH for 10 days. Values are the mean ± standard deviation (n = 3). Means with a common letter are not significantly different (Fisher´s least significant difference, p ˂ 0.05) (TIFF 3264 kb)
449_2019_2153_MOESM4_ESM.tif (2.5 mb)
Supplementary Fig. 4 Productivity of the WT and mutant strains of C. saccharophila cultured at pH 6 and 7. A) Biomass productivity; B) Lipid productivity; C) TAG productivity. Cells were incubated in 50 mL of TAP medium adjusted to the pH indicated for 10 days. Values are the mean ± standard deviation (n = 3). Means with a common letter are not significantly different (Fisher´s least significant difference, p ˂ 0.05) (TIFF 2595 kb)
449_2019_2153_MOESM5_ESM.tif (795 kb)
Supplementary Table 1 Fatty acid methyl ester (FAME) composition of the WT and mutant strains (M1 and M5) of C. saccharophila (percentage of total FAMEs) (TIFF 795 kb)


  1. 1.
    Sarayloo E, Simsek S, Unlu YS et al (2018) Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresour Technol 250:764–769. CrossRefGoogle Scholar
  2. 2.
    Klok AJ, Lamers PP, Martens DE et al (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528. CrossRefGoogle Scholar
  3. 3.
    Paliwal C, Mitra M, Bhayani K et al (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226. CrossRefGoogle Scholar
  4. 4.
    Jagadevan S, Banerjee A, Banerjee C et al (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:185. CrossRefGoogle Scholar
  5. 5.
    Contreras-Pool PY, Peraza-Echeverria S, Ku-González AF, Herrera-Valencia VA (2016) The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta). Algae 31:267–276CrossRefGoogle Scholar
  6. 6.
    Remmers IM, Wijffels RH, Barbosa MJ, Lamers PP (2018) Can we approach theoretical lipid yields in microalgae? Trends Biotechnol 36:265–276. CrossRefGoogle Scholar
  7. 7.
    Steensels J, Snoek T, Meersman E et al (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995. CrossRefGoogle Scholar
  8. 8.
    Mehtani J, Arora N, Patel A et al (2017) Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. Bioresour Technol 242:121–127. CrossRefGoogle Scholar
  9. 9.
    Sivaramakrishnan R, Incharoensakdi A (2017) Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour Technol 235:366–370. CrossRefGoogle Scholar
  10. 10.
    de Jaeger L, Verbeek RE, Draaisma RB et al (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69. CrossRefGoogle Scholar
  11. 11.
    Sirikhachornkit A, Vuttipongchaikij S, Suttangkakul A et al (2016) Increasing the triacylglycerol content in Dunaliella tertiolecta through isolation of starch-deficient mutants. J Microbiol Biotechnol 26:854–866. CrossRefGoogle Scholar
  12. 12.
    Lim DKY, Schuhmann H, Sharma K, Schenk PM (2015) Isolation of high-lipid tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. Bioenergy Res 8:750–759. CrossRefGoogle Scholar
  13. 13.
    Sarayloo E, Tardu M, Unlu YS et al (2017) Understanding lipid metabolism in high-lipid-producing Chlorella vulgaris mutants at the genome-wide level. Algal Res 28:244–252. CrossRefGoogle Scholar
  14. 14.
    Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J Phycol 32:598–601CrossRefGoogle Scholar
  15. 15.
    Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89. CrossRefGoogle Scholar
  16. 16.
    Eibl JK, Corcoran JD, Senhorinho GN et al (2014) Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies. AMB Express 4:7. CrossRefGoogle Scholar
  17. 17.
    Fuggi A, Pinto G, Pollio A (1988) Effects of NaCI, Na2SO4, H2SO4, and glucose on growth, photosynthesis, and respiration in the acidophilic alga Dunaliella acidophila (Volvocales, Chlorophyta). Phycologia 27:334–339CrossRefGoogle Scholar
  18. 18.
    Fuggi A, Pinto G, Pollio A, Taddei R (1988) The role of glycerol in osmoregulation of the acidophilic alga. Phycologia 27:439–446CrossRefGoogle Scholar
  19. 19.
    Herrera-Valencia VA, Contreras-Pool PY, López-Adrián SJ et al (2011) The green microalga Chlorella saccharophila as a suitable source of oil for biodiesel production. Curr Microbiol 63:151–157. CrossRefGoogle Scholar
  20. 20.
    Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San DiegoGoogle Scholar
  21. 21.
    Wimpenny JW, Waters P (1984) Growth of micro-organisms in gel-stabilized two-dimensional diffusion gradient systems. J Gen Microbiol 130:2921–2926Google Scholar
  22. 22.
    Cakmak T, Angun P, Demiray YE, Ozkan AD (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957. CrossRefGoogle Scholar
  23. 23.
    Herrera-Valencia VA, Us-Vázquez RA, Larqué-Saavedra FA, Barahona-Pérez LF (2012) Naturally occurring fatty acid methyl esters and ethyl esters in the green microalga Chlamydomonas reinhardtii. Ann Microbiol 62:865–870. CrossRefGoogle Scholar
  24. 24.
    Pérez L, Bugja R, Lorenschat J et al (2011) Aquatic ecosystems of the Yucatán Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661:407–433. CrossRefGoogle Scholar
  25. 25.
    Drago L, Nicola L, Mattina R, De Vecchi E (2010) In vitro selection of resistance in Escherichia coli and Klebsiella spp. at in vivo fluoroquinolone concentrations. BMC Microbiol 10:119. CrossRefGoogle Scholar
  26. 26.
    Hong ME, Lee KS, Yu BJ et al (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149:52–59. CrossRefGoogle Scholar
  27. 27.
    Luo L, Wen Q, Ren J et al (2014) Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron 82:1115–1128. CrossRefGoogle Scholar
  28. 28.
    Patnaik R, Louie S, Gavrilovic V et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712. CrossRefGoogle Scholar
  29. 29.
    Guihneuf F, Fouqueray M, Mimouni V et al (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22:629–638. CrossRefGoogle Scholar
  30. 30.
    Beacham TA, Macia VM, Rooks P et al (2015) Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnol Rep 7:87–94. CrossRefGoogle Scholar
  31. 31.
    Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. CrossRefGoogle Scholar
  32. 32.
    Anthony J, Rangamaran VR, Gopal D et al (2014) Ultraviolet and 5′ fluorodeoxyuridine Induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile: a new insight on lipid-metabolizing genes and structural characterization of related proteins. Mar Biotechnol 17:66–80. CrossRefGoogle Scholar
  33. 33.
    Doan TTY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23:895–901. CrossRefGoogle Scholar
  34. 34.
    Sharma KK, Li Y, Schenk PM (2015) Rapid lipid induction in Chlorella sp. by UV-C radiation. Bioenergy Res 8:1824–1830. CrossRefGoogle Scholar
  35. 35.
    Norashikin MN, Loh SH, Aziz A, Cha TS (2018) Metabolic engineering of fatty acid biosynthesis in Chlorella vulgaris using an endogenous omega-3 fatty acid desaturase gene with its promoter. Algal Res 31:262–275. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY)MéridaMéxico
  2. 2.Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán (CICY)MéridaMéxico
  3. 3.Departamento de Ingeniería Química y BioquímicaTecnológico Nacional de México, Instituto Tecnológico de MéridaMéridaMéxico
  4. 4.Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY)MéridaMéxico

Personalised recommendations