Advertisement

Influence of linear alkylbenzene sulfonate and ethanol on the degradation kinetics of domestic sewage in co-digestion with commercial laundry wastewater

  • Thaís Zaninetti MacedoEmail author
  • Edson Luiz Silva
  • Isabel Kimiko Sakamoto
  • Marcelo Zaiat
  • Maria Bernadete A. Varesche
Research Paper
  • 24 Downloads

Abstract

The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L−1 to 66.9 mg L−1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L−1 and 18.9 mg LAS L−1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L−1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.

Keywords

Sand DGGE Substrate inhibition Co-substrate Microbial diversity 

Notes

Acknowledgements

The authors gratefully acknowledge the support provided for this study by the São Paulo Research Foundation (FAPESP; Grants 2015/02640-2 and 2015/06246-7).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mungray AK, Kumar P (2009) Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad. 63(8):981–987CrossRefGoogle Scholar
  2. 2.
    Braga JK, Varesche MBA (2014) Commercial laundry water characterisation. Am J Anal Chem. 5:8–16CrossRefGoogle Scholar
  3. 3.
    Yuan CL, Xu ZZ, Fan MX et al (2014) Study on characteristics and harm of surfactants. J Chem Pharm Res 6(7):2233–2237Google Scholar
  4. 4.
    Karahan Ö (2010) Inhibition effect of linear alkylbenzene sulphonates on the biodegradation mechanisms of activated sludge. Bioresour Technol 101(1):92–97CrossRefGoogle Scholar
  5. 5.
    Liwarska-Bizukojc E, Scheumann R, Drews A et al (2008) Effect of anionic and nonionic surfactants on the kinetics of the aerobic heterotrophic biodegradation of organic matter in industrial wastewater. Water Res 42(4–5):923–930CrossRefGoogle Scholar
  6. 6.
    Oviedo MDC, Marquez DS, Alonso JMQ (2004) Influence of linear alkylbenzene sulphonates (LAS) on microbial activity of activated sludge. Chem Biochem Eng Q 18(4):409–415Google Scholar
  7. 7.
    de Faria CV, Delforno TP, Okada DY et al (2017) Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage. Environ Technol (United Kingdom) 3330:1–9Google Scholar
  8. 8.
    Centurion VB, Moura AGL, Delforno TP et al (2018) Anaerobic co-digestion of commercial laundry wastewater and domestic sewage in a pilot-scale EGSB reactor: the influence of surfactant concentration on microbial diversity. Int Biodeterior Biodegrad 127:77–86CrossRefGoogle Scholar
  9. 9.
    Granatto CF, Macedo TZ, Gerosa LE et al (2019) Scale-up evaluation of anaerobic degradation of linear alkylbenzene sulfonate from sanitary sewage in expanded granular sludge bed reactor. Int Biodeterior Biodegrad 138:23–32CrossRefGoogle Scholar
  10. 10.
    Oliveira LL, Costa RB, Duarte ICS et al (2010) Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor. Braz J Chem Eng 27(04):539–543CrossRefGoogle Scholar
  11. 11.
    Delforno TP, Okada DY, Polizel J et al (2012) Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor. Bioresour Technol 107:103–109CrossRefGoogle Scholar
  12. 12.
    Macedo TZ, Okada DY, Delforno TP et al (2015) The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection. Bioprocess Biosyst Eng 38(10):1835–1844CrossRefGoogle Scholar
  13. 13.
    Macedo TZ, Delforno TP, Braga JK et al (2017) Robustness and microbial diversity of a fluidized bed reactor employed for the removal and degradation of an anionic surfactant from laundry wastewater. J Environ Eng 143(9):04017062CrossRefGoogle Scholar
  14. 14.
    Braga JK, Motteran F, Macedo TZ et al (2015) Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(9):946–957Google Scholar
  15. 15.
    Motteran F, Braga JK, Silva EL et al (2016) Kinetics of methane production and biodegradation of linear alkylbenzene sulfonate from laundry wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 51(14):1288–1302CrossRefGoogle Scholar
  16. 16.
    Garcia-Morales JL, Nebot E, Romero LI et al (2001) Comparison between acidogenic and methanogenic inhibition caused by linear alkylbenzene-sulfonate (LAS). Chem Biochem Eng Q 15(1):13–19Google Scholar
  17. 17.
    Andrade MVF, Sakamoto IK, Oliveira AGP et al (2017) Bioremoval of surfactant from laundry wastewater in optimized condition by anoxic reactors. Water Air Soil Pollut 228(4):1–13CrossRefGoogle Scholar
  18. 18.
    Motteran F, Nadai BM, Braga JK et al (2018) Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor. Sci Total Environ 640:1411–1423CrossRefGoogle Scholar
  19. 19.
    Andrade MVF, Sakamoto IK, Corbi JJ et al (2016) Effects of hydraulic retention time, co-substrate and nitrogen source on laundry wastewater anionic surfactant degradation in fluidized bed reactors. Bioresour Technol 224:246–254CrossRefGoogle Scholar
  20. 20.
    APHA-AWWA-WPCF (American Public Health Association-American Water Works Association-Water Environment Federation). (2005) Standard methods for the examination of water and wastewater, 20th ed., Washington, DCGoogle Scholar
  21. 21.
    Ripley LE, Boyle WC, Converse JC (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 58(5):406–411Google Scholar
  22. 22.
    Penteado ED, Lazaro CZ, Sakamoto IK et al (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38(14):6137–6145CrossRefGoogle Scholar
  23. 23.
    Motteran F, Lima Gomes PCF, Silva EL et al (2017) Simultaneous determination of anionic and nonionic surfactants in commercial laundry wastewater and anaerobic fluidized bed reactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Sci Total Environ 580:1120–1128CrossRefGoogle Scholar
  24. 24.
    Duarte ICS, Oliveira LL, Buzzini AP et al (2006) Development of a method by HPLC to determine LAS and its application in anaerobic reactors. J Braz Chem Soc 17(7):1360–1367CrossRefGoogle Scholar
  25. 25.
    Duarte ICS, Oliveira LL, Saavedra NKD et al (2008) Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate. Biodegradation 19(3):375–385CrossRefGoogle Scholar
  26. 26.
    Chen CY, Chen SD (2000) Biofilm characteristics in biological denitrification biofilm reactors. Water Sci Technol 41(4–5):147–154CrossRefGoogle Scholar
  27. 27.
    Zaiat M, Vieira LGT (2007) Foresti E (2007) Rapid method to assess substrate inhibition in anaerobic fixed-bed reactors for wastewater treatment. ICFAI J Environ Sci 2:58–67Google Scholar
  28. 28.
    Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10(6):707–723CrossRefGoogle Scholar
  29. 29.
    Griffiths RI, Whiteley AS, Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491CrossRefGoogle Scholar
  30. 30.
    Nübel U, Engelen B, Felsre A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643CrossRefGoogle Scholar
  31. 31.
    Delforno TP, Moura GL, Okada DY, Varesche MBA (2014) Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresour Technol 154:114–121CrossRefGoogle Scholar
  32. 32.
    Okada DY, Delforno TP, Etchebehere C et al (2014) Evaluation of the microbial community of up fl ow anaerobic sludge blanket reactors used for the removal and degradation of linear alkylbenzene sulfonate by pyrosequencing. Int Biodeter Biodegr 96:63–70CrossRefGoogle Scholar
  33. 33.
    Mösche M, Meyer U (2002) Toxicity of linear alkylbenzene sulfonate in anaerobic digestion: influence of exposure time. Water Res 36(13):3253–3260CrossRefGoogle Scholar
  34. 34.
    Garcia MT, Campos E, Sánchez-Leal J et al (2006) Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge. Water Res 40(15):2958–2964CrossRefGoogle Scholar
  35. 35.
    Schörberl Marl P (1989) Basic principles of LAS. Tenside Surfactants Deterg 26(2):86–94Google Scholar
  36. 36.
    Duarte ICS, Oliveira LL, Saavedra NK et al (2010) Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor. Bioresour Technol 101(2):606–612CrossRefGoogle Scholar
  37. 37.
    Souza LFC, Florencio L, Gavazza S, Kato MT (2016) Methanogenic activity inhibition by increasing the linear alkylbenzene sulfonate (LAS) concentration. J Environ Sci Health A Tox Hazard Subst Environ Eng 51(8):656–660Google Scholar
  38. 38.
    Lobner T, Torang L, Batstone DJ et al (2005) Effects of process stability on anaerobic biodegradation of LAS in UASB reactors. Biotechnol Bioeng 89(7):759–765CrossRefGoogle Scholar
  39. 39.
    Okada DY, Delforno TP, Esteves AS et al (2013) Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate. J Environ Manage 128:169–172CrossRefGoogle Scholar
  40. 40.
    Westall JC, Chen H, Zhang W et al (1999) Adsorption of linear alkylbenzenesulfonates on sediment materials. Environ Sci Technol 33(18):3110–3118CrossRefGoogle Scholar
  41. 41.
    Motteran F, Braga JK, Sakamoto IK et al (2014) Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Sci Total Environ 481:121–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thaís Zaninetti Macedo
    • 1
    Email author
  • Edson Luiz Silva
    • 2
  • Isabel Kimiko Sakamoto
    • 1
  • Marcelo Zaiat
    • 1
  • Maria Bernadete A. Varesche
    • 1
  1. 1.Laboratory of Biological Processes, Department of Hydraulics and SanitationEngineering School of São Carlos-University of São Paulo (EESC-USP)São CarlosBrazil
  2. 2.Department of Chemical EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations