Advertisement

Insights into the effect of imidazolium-based ionic liquids on chemical structure and hydrolytic activity of microbial lipase

  • Paloma Andrade Martins Nascimento
  • Jorge Fernando Brandão Pereira
  • Valéria de Carvalho Santos-EbinumaEmail author
Research Paper

Abstract

This work studied the effect of the cation alkyl chain length of 1-alkyl-n-methylimidazolium chloride ([Cnmim]Cl)-based ILs on the activity of Aspergillus niger lipase. First, the lipase activity in the presence of different ILs concentration over time was determined. ILs with shorter cation alkyl side chain length, namely [C4mim]Cl and [C6mim]Cl, promoted an increase of lipase activity; while, [C8mim]Cl, depending on its concentration, maintained or decreased the enzyme activity. In the presence of ILs with longer cation alkyl chain length, i.e., [C10mim]Cl and [C12mim]Cl, the lipase relative activity was reduced with 0.1 (%v/v) and until suppressed ([C12mim]Cl at 0.3 (%v/v)) as a result of irreversible changes in its secondary structure. Fluorescence and circular dichroism spectroscopy analysis confirmed the results achieved. These findings show that [Cnmim]Cl-based ILs can exert different behavior on the lipase’ activity (enhance, maintain or even inhibit) and structural conformation, depending on the cation alkyl chain length and their relative concentration.

Keywords

Lipase Ionic liquid Hydrolytic activity Stability-inhibition Imidazolium-based ILs 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. The authors are grateful for financial support from FAPESP (São Paulo Research Foundation, Brazil) through the projects: 2014/015803; 2014/16424-7. Nascimento P.A.M. is also grateful for financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil, through the project: 140331/2016-6.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

449_2019_2121_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. 1.
    Dobrev G, Zhekova B, Dobreva V, Strinska H, Doykina P, Krastanov A (2015) Biocatal Agric Biotechnol 4:77–82CrossRefGoogle Scholar
  2. 2.
    Adak S, Datta S, Bhattacharya S, Banerjee R (2015) J Mol Catal B Enzym 119:12–17CrossRefGoogle Scholar
  3. 3.
    Melani NB, Tambourgi EB, Silveira E (2019) Sep Purif Rev 00:1–16CrossRefGoogle Scholar
  4. 4.
    Cvjetko Bubalo M, Tusek AJ, Vinkovic M, Radosevic K, Srcek VG, Redovnikovic IR (2015) J Mol Catal B Enzym 122:188–198CrossRefGoogle Scholar
  5. 5.
    Budžak S, Sundaram S, Tišma M, Hessel VJ (2019) Biosci Bioeng.  https://doi.org/10.1016/j.jbiosc.2019.01.004 (In Press) Google Scholar
  6. 6.
    Lee SY, Khoiroh I, Ling TC, Show PL (2017) Sep Purif Technol 179:152–160CrossRefGoogle Scholar
  7. 7.
    Trono D (2019) In: Singh RS, Singhania RR, Pandey A, Larroche C (eds) Advances in enzyme technology. Elsevier BV, AmsterdamGoogle Scholar
  8. 8.
    Grbavčić S, Bezbradica D, Izrael-Zivkovic L, Avramovic N, Milosavic N, Karadzic I, Knezevic-Jugovic Z (2011) Bioresour Technol 102:11226–11233CrossRefGoogle Scholar
  9. 9.
    Ohno H (2019) In: Nakanishi T (ed) Funtional organic liquids. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M (2018) A review J Mol Liq 251:150–166CrossRefGoogle Scholar
  11. 11.
    Goldfeder M, Fishman A (2014) Appl Microbiol Biotechnol 98:545–554CrossRefGoogle Scholar
  12. 12.
    Kumar A, Bisht M, Venkatesu P (2017) Int J Biol Macromol 96:611–651CrossRefGoogle Scholar
  13. 13.
    Huddleston JGJG, Willauer HD, Swatloski RP, Visser AE, Rogers RDRD (1998) Chem Commun 1765–1766Google Scholar
  14. 14.
    Ajloo D, Sangian M, Ghadamgahi M, Evini M, Saboury AA (2013) Int J Biol Macromol 55:47–61CrossRefGoogle Scholar
  15. 15.
    Gao WW, Zhang FX, Zhang GX, Zhou CH (2015) Biochem Eng J 99:67–84CrossRefGoogle Scholar
  16. 16.
    Moniruzzaman M, Kamiya N, Goto M (2010) Org Biomol Chem 8:2887–2899CrossRefGoogle Scholar
  17. 17.
    Li N, Du W, Huang Z, Zhao W, Wang S (2013) Chin J Catal 34:769–780CrossRefGoogle Scholar
  18. 18.
    Neves CMSS, Silva AMS, Fernandes AM, Coutinho JAP, Freire MG (2017) J Phys Chem Lett 8:3015–3019CrossRefGoogle Scholar
  19. 19.
    Ventura SPM, Santos LDF, Saraiva JA, Coutinho JAP (2012) Green Chem 14:1620–1625CrossRefGoogle Scholar
  20. 20.
    Jia R, Hu Y, Liu L, Jiang L, Huang H (2013) Org Biomol Chem 11:7192–7198CrossRefGoogle Scholar
  21. 21.
    Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) JACS 9:4125–4131CrossRefGoogle Scholar
  22. 22.
    Jia R, Hu Y, Jiang L, Zou B, Huang H (2013) ACS Catal 3:1976–1983CrossRefGoogle Scholar
  23. 23.
    Lai J-Q, Li Z, Lu Y-H, Yang Z (2011) Green Chem 13:1860–1868CrossRefGoogle Scholar
  24. 24.
    Ventura SPM, Santos LDF, Saraiva JA, Coutinho JAP (2012) World J Microbiol Biotechnol 28:2303–2310CrossRefGoogle Scholar
  25. 25.
    Li C, Zhang F, Gao Z, He L, Zeng X, Zhu Q, Yu L (2018) Appl Microbiol Biotechnol 102:225–235CrossRefGoogle Scholar
  26. 26.
    Pratama L, Helianti I, Suryani A, Wahyuntari B (2017) Process Microbiol Indones 11:35–45CrossRefGoogle Scholar
  27. 27.
    Deng X, Cao S, Li N, Wu H, Smith TJ, Zong M, Lou W (2016) J Catal 37:584–595Google Scholar
  28. 28.
    Zhao H, Olubajo O, Song Z, Sims AL, Person TE, Lawal RA, Holley LDA (2006) Bioorg Chem 34:15–25CrossRefGoogle Scholar
  29. 29.
    Panja S, Misra SK, Tripathi SC, Bindu M, Gandhi PM (2014) Sep Purif Technol 122:67–72CrossRefGoogle Scholar
  30. 30.
    Vicente FA, Cardoso IS, Sintra TE, Lemus J, Marques EF, Ventura SPM, Coutinho JAP (2017) J Phys Chem B 121:8742–8755CrossRefGoogle Scholar
  31. 31.
    Mayordomo I, Randez-Gil F, Prieto JA (2000) J Agric Food Chem 48:105–109CrossRefGoogle Scholar
  32. 32.
    Geng F, Zheng L, Yu L, Li G, Tung C (2010) Process Biochem 45:306–311CrossRefGoogle Scholar
  33. 33.
    Attri P, Venkatesu P (2013) Process Biochem 48:462–470CrossRefGoogle Scholar
  34. 34.
    Melgosa R, Sanz MT, Solaesa ÁG, Bucio SL, Beltrán S (2015) J Supercrit Fluids 97:51–62CrossRefGoogle Scholar
  35. 35.
    Dabirmanesh B, Daneshjou S, Sepahi AA, Ranjbar B, Khavari-Nejad RA, Gill P, Heydari A, Khajeh K (2011) Int J Biol Macromol 48:93–97CrossRefGoogle Scholar
  36. 36.
    Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269CrossRefGoogle Scholar
  37. 37.
    Andrade MA, Chacón P, Merelo JJ, Morán F (1993) Protein Eng Des Sel 6:383–390CrossRefGoogle Scholar
  38. 38.
    Taha M, Quental MV, Correia I, Freire MG, Coutinho JAP (2015) Process Biochem 50:1158–1166CrossRefGoogle Scholar
  39. 39.
    Tomé LIN, Dominguez-Perez M, Cláudio AFM, Freire MG, Marrucho IM, Cabeza O, Coutinho JAP (2009) J Phys Chem B 113:13971–13979CrossRefGoogle Scholar
  40. 40.
    Kumar A, Venkatesu P (2014) Int J Biol Macromol 63:244–253CrossRefGoogle Scholar
  41. 41.
    Rawat K, Bohidar HB (2012) J Phys Chem B 116:11065–11074CrossRefGoogle Scholar
  42. 42.
    Schroder C (2017) In: Kirchner B, Perlt E (eds) Ionic Liquids II. Topics in current chemistry. Springer, ChamGoogle Scholar
  43. 43.
    Bandrés I, Meler S, Giner B, Cea P, Lafuente C (2009) J Solut Chem 38:1622–1634CrossRefGoogle Scholar
  44. 44.
    Klahn M, Geraldins SL, Seduraman A, Wu P (2011) Phys Chem Chem Phys 13:1649–1662CrossRefGoogle Scholar
  45. 45.
    Fan Y, Dong X, Li X, Zhong Y, Kong J, Hua S, Miao J, Li Y (2016) Spectrochim Acta Part A Mol Biomol Spectrosc 159:128–133CrossRefGoogle Scholar
  46. 46.
    Patel R, Kumari M, Khan AB (2014) Appl Biochem Biotechnol 172:3701–3720CrossRefGoogle Scholar
  47. 47.
    Lange C, Patil G, Rudolph R (2005) Protein Sci 14:2693–2701CrossRefGoogle Scholar
  48. 48.
    Kumar PK, Jha I, Venkatesu P, Bahadur I, Ebenso EE (2017) J Mol Liq 246:178–186CrossRefGoogle Scholar
  49. 49.
    Kumar A, Venkatesu P (2014) Process Biochem 49:2158–2169CrossRefGoogle Scholar
  50. 50.
    Reslan M, Kayser V (2018) Biophys Rev 10:781–793CrossRefGoogle Scholar
  51. 51.
    Modaressi A, Sifaoui H, Mielcarz M, Domańska U, Rogalski M (2007) Colloids Surf A Physicochem Eng Asp 302:181–185CrossRefGoogle Scholar
  52. 52.
    Wang GY, Wang YY, Wang XH (2017) J Mol Liq 232:55–61CrossRefGoogle Scholar
  53. 53.
    Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) J Colloid Interface Sci 336:111–116CrossRefGoogle Scholar
  54. 54.
    Łuczak J, Markiewicz M, Thöming J, Hupka J, Jungnickel C (2011) J Colloid Interface Sci 362:415–422CrossRefGoogle Scholar
  55. 55.
    Šarac B, Medos Z, Cognigni A, Bica K, Chen L-J, Bester-Rogac M (2017) Colloids Surf A Physicochem Eng Asp 532:609–617CrossRefGoogle Scholar
  56. 56.
    Naushad M, Alothman ZA, Khan AB, Ali M (2012) Int J Biol Macromol 51:555–560CrossRefGoogle Scholar
  57. 57.
    Ha SH, Koo Y-M (2011) Korean J Chem Eng 28:2095–2101CrossRefGoogle Scholar
  58. 58.
    Duplissa L, Andreescu S, Baltus R, Njagi J (2008) 10th Annual summer symposium on undergraduate research experiences, Clarkson University’s 138–141Google Scholar
  59. 59.
    Lau RM, Sorgedrager MJ, Carrea G, Rantwijk FV, Secundo F, Sheldon RA (2004) Green Chem 6:483–487CrossRefGoogle Scholar
  60. 60.
    Freire MG, Neves CMSS, Marrucho IM, Coutinho JAP (2010) J Phys Chem A 2010(114):3744–3749CrossRefGoogle Scholar
  61. 61.
    Sun Y, Ding S, Huang H, Hu Y (2017) Bioresour Bioprocess 4:4–11CrossRefGoogle Scholar
  62. 62.
    Liu Y, Jin Q, Shan L, Liu Y, Shen W, Wang X (2007) Ultrason Sonochem 15:402–407CrossRefGoogle Scholar
  63. 63.
    Abbyad P, Childs W, Shi X, Boxer SG (2007) Biophysics 104:20189–20194Google Scholar
  64. 64.
    Fan Y, Yan J, Zhang S, Li J, Chen D, Duan P (2012) Appl Biochem Biotechnol 168:592–603CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioprocesses and Biotechnology, School of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations