Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications

  • Jessica Condi Mainardi
  • Kurosch Rezwan
  • Michael MaasEmail author
Research Paper


In this work, we present a biocompatible one-pot processing route for ceramic/hydrogel nanocomposites in which we embed live bacteria. In our approach, we fabricate a highly stable alginate hydrogel with minimal shrinkage, highly increased structural and mechanical stability, as well as excellent biocompatibility. The hydrogel was produced by ionotropic gelation and reinforced with alumina nanoparticles to form a porous 3D network. In these composite gels, the bacteria Escherichia coli and Bacillus subtilis were embedded. The immobilized bacteria showed high viability and similar metabolic activity as non-embedded cells. Even after repeated glucose consumption cycles, the material maintained high structural stability with stable metabolic activity of the immobilized bacteria. Storing the bionanocomposite for up to 60 days resulted in only minor loss of activity. Accordingly, this approach shows great potential for producing macroscopic bioactive materials for biotechnological processes.


Cell encapsulation Nanocomposite Hydrogel Ceramic nanoparticles 



We would like to thank DFG Research Training Group GRK 1860, ‘Micro-, meso- and macroporous nonmetallic materials: fundamentals and applications’ (MIMENIMA) for funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

449_2019_2119_MOESM1_ESM.doc (107 kb)
Supplementary material 1 (DOC 107 kb)


  1. 1.
    Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRefGoogle Scholar
  2. 2.
    Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189CrossRefGoogle Scholar
  3. 3.
    Kang C-H, Kwon Y-J, So J-S (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69CrossRefGoogle Scholar
  4. 4.
    Han D et al (2013) Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds. J Korean Soc Appl Biol Chem 56(2):125–133CrossRefGoogle Scholar
  5. 5.
    Quintana MG, Dalton H (1999) Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Enzyme Microb Technol 24(3):232–236CrossRefGoogle Scholar
  6. 6.
    Heipieper HJ et al (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74(5):961–973CrossRefGoogle Scholar
  7. 7.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefGoogle Scholar
  8. 8.
    Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78CrossRefGoogle Scholar
  9. 9.
    Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18(5):240–251CrossRefGoogle Scholar
  10. 10.
    Huq T et al (2013) Encapsulation of probiotic bacteria in biopolymeric system. Crit Rev Food Sci Nutr 53(9):909–916CrossRefGoogle Scholar
  11. 11.
    Zhang B-B et al (2016) Robust and biocompatible hybrid matrix with controllable permeability for microalgae encapsulation. ACS Appl Mater Interfaces 8(14):8939–8946CrossRefGoogle Scholar
  12. 12.
    Kang A et al (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9):2651–2663CrossRefGoogle Scholar
  13. 13.
    Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Suppl):194–205CrossRefGoogle Scholar
  14. 14.
    Das M, Adholeya A (2015) Potential uses of immobilized bacteria, fungi, algae, and their aggregates for treatment of organic and inorganic pollutants in wastewater. In: Water challenges and solutions on a global scale, chap 15, pp 319–337.
  15. 15.
    Böttcher H, Soltamnn U, Mertigb M, Pompe W (2004) Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J Mater Chem 14:2176–2188CrossRefGoogle Scholar
  16. 16.
    Martín MJ et al (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25CrossRefGoogle Scholar
  17. 17.
    de Vos P et al (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34CrossRefGoogle Scholar
  18. 18.
    Orive G et al (2015) Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci 36(8):537–546CrossRefGoogle Scholar
  19. 19.
    Riddle KW, Mooney DJ (2004) Fundamentals of cell immobilisation biotechnology. Springer-Science + Business Media, B.V, New York, pp 22–26Google Scholar
  20. 20.
    Fedorovich NE et al (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29(12):601–606CrossRefGoogle Scholar
  21. 21.
    Pillay V et al (1998) Ionotropic gelation: encapsulation of indomethacin in calcium alginate gel discs. J Microencapsul 15(2):215–226CrossRefGoogle Scholar
  22. 22.
    Chan LW, Lee HY, Heng PWS (2006) Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohyd Polym 63(2):176–187CrossRefGoogle Scholar
  23. 23.
    Leong J-Y et al (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60CrossRefGoogle Scholar
  24. 24.
    Sonego JM et al (2016) Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: a structural study. Dalton Trans 45(24):10050–10057CrossRefGoogle Scholar
  25. 25.
    Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11(3):47–54CrossRefGoogle Scholar
  26. 26.
    Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35(27):10162–10171CrossRefGoogle Scholar
  27. 27.
    Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192CrossRefGoogle Scholar
  28. 28.
    Thamaraiselvi TV, Rajeswari S (2004) Biological evaluation of bioceramic materials—a review. Trends Biomater Artif Organs 18:9–17Google Scholar
  29. 29.
    Warashina H et al (2003) Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials 24(21):3655–3661CrossRefGoogle Scholar
  30. 30.
    Zhao F et al (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054CrossRefGoogle Scholar
  31. 31.
    Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216(3):248–264CrossRefGoogle Scholar
  32. 32.
    Song F et al (2015) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 11(1):40–52CrossRefGoogle Scholar
  33. 33.
    Blondeau M, Coradin T (2012) Living materials from sol–gel chemistry: current challenges and perspectives. J Mater Chem 22(42):22335–22343CrossRefGoogle Scholar
  34. 34.
    Perullini M et al (2015) Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices. Mesoporous Biomater 2:3–12Google Scholar
  35. 35.
    Pannier A et al (2012) Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber. Appl Microbiol Biotechnol 93(4):1755–1767CrossRefGoogle Scholar
  36. 36.
    Perullini M et al (2005) Cell growth at cavities created inside silica monoliths synthesized by sol–gel. Chem Mater 17(15):3806–3808CrossRefGoogle Scholar
  37. 37.
    Perullini M et al (2011) Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J Mater Chem 21(12):4546–4552CrossRefGoogle Scholar
  38. 38.
    Carro L, Hablot E, Coradin T (2014) Hybrids and biohybrids as green materials for a blue planet. J Sol Gel Sci Technol 70(2):263–271CrossRefGoogle Scholar
  39. 39.
    Brandes C et al (2014) Gel casting of free-shapeable ceramic membranes with adjustable pore size for ultra- and microfiltration. J Am Ceram Soc 97(5):1393–1401CrossRefGoogle Scholar
  40. 40.
    Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521CrossRefGoogle Scholar
  41. 41.
    Growney Kalaf EA et al (2016) Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications. Mater Sci Eng C 63:198–210CrossRefGoogle Scholar
  42. 42.
    Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78CrossRefGoogle Scholar
  43. 43.
    Groboillot A, Boadi DK et al (1994) Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14(2):75–107CrossRefGoogle Scholar
  44. 44.
    Bajpai SK, Kirar N (2016) Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Des Monomers Polym 19(1):89–98CrossRefGoogle Scholar
  45. 45.
    Lin Z et al (2019) 3D printing of mechanically stable calcium-free alginate-based scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization. Adv Funct Mater. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Keramische Werkstoffe und Bauteile, Advanced Ceramics, Universität BremenBremenGermany
  2. 2.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany

Personalised recommendations