Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass

  • Mohamed M. Khattab
  • Yaser DahmanEmail author
Research Paper


The present study describes production and recovery of poly(3-hydroxybutyrate) P(3HB) from agro-industrial residues. Production was conducted using Ralstonia eutropha strain with hemp hurd biomass hydrolysates sugars as a carbon source and ammonium chloride as the nitrogen source. Results show that maximum hydrolysis yield of 72.4% was achieved with total sugar hydrolysate concentration (i.e., glucose and xylose) of 53.0 g/L. Sugar metabolism by R. eutropha showed preference for glucose metabolism over xylose. Under optimum conditions, cells can accumulate P(3HB) polymer in quantity up to 56.3 wt% of the dry cell weight. This corresponds to total production of 13.4 g/L (productivity of 0.167 g/L h). Nitrogen source showed no adverse effect on P(3HB) biosynthesis, but rather on cell growth. Among several examined recovery techniques, ultrasonic-assisted sodium dodecyl sulfate (SDS) recovered bioplastic directly from the broth cell concentrate with P(3HB) content of 92%. Number average molecular weights (Mn) of final recovered bioplastic were in the range of 150–270 kDa with polydispersity index (Mw/Mn) in the range of 2.1–2.4.


Hemp hurd Renewable and sustainable feedstock Enzymatic hydrolysis Ultrasonication Poly-3-hydroxybutyrate Ralstonia eutropha 



Authors would like to acknowledge financial support from Shepherdess Biotech Inc. (Canada), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Faculty of Engineering and Architectural Science at Ryerson University in Toronto, Canada. Furthermore, financial and technical support of Shepherdess Ecotech (Toronto, Canada) is highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732–743CrossRefGoogle Scholar
  2. 2.
    Jeon JM, Brigham CL, Kim YH, Kim HJ, Yi DD, Kim H (2014) Appl Microbiol Biotechnol 98(12):5461–5469CrossRefGoogle Scholar
  3. 3.
    Reusch RN, Sparrow AW, Gardiner J (1992) Biochim Biophys Acta 1123:33–40CrossRefGoogle Scholar
  4. 4.
    Martin DP, Williams SF (2003) Biochem Eng J 16:97–105CrossRefGoogle Scholar
  5. 5.
    Radhika D, Murugesan AG (2012) Bioresour Technol 121:83–92CrossRefGoogle Scholar
  6. 6.
    Poomipuk N, Reungsang A, Plangklang P (2014) Int J Biol Macromol 65:51–64CrossRefGoogle Scholar
  7. 7.
    Cherney JH, Small E (2016) Agronomy 6:58CrossRefGoogle Scholar
  8. 8.
    Binod P, Sindhu R, Singhania RR, Vikram S, Devi S, Nagalakshmi S (2010) Bioresour Technol 101:4767–4774CrossRefGoogle Scholar
  9. 9.
    Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2012) Bioresour Technol 107:275–281CrossRefGoogle Scholar
  10. 10.
    Yoo J, Alavi S, Vadlani P, Amanor-Boadu V (2011) Bioresour Technol 102:7583–7590CrossRefGoogle Scholar
  11. 11.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  12. 12.
    Ouyang J, Dong Z, Song X, Lee X, Chen M, Yong Q (2010) Bioresour Technol 101(17):6685–6691CrossRefGoogle Scholar
  13. 13.
    Pakarinen A, Maijala P, Stoddard FL, Santanen A, Tuomainen P, Kymalainen M, Viikari L (2011) Biomass Bioenergy 35:3071–3078CrossRefGoogle Scholar
  14. 14.
    Khanna S, Srivastava AK (2005) Process Biochem 40:2173–2182CrossRefGoogle Scholar
  15. 15.
    Sudesh K, Abe H, DoiY (2000) Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  16. 16.
    Uchino K, Saito T, Gebauer B, Jendrossek D (2007) J Bacteriol 189:8250–8256CrossRefGoogle Scholar
  17. 17.
    Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Kimura H (1992) FEMS Microbiol Rev 103:103–108CrossRefGoogle Scholar
  18. 18.
    Repaske R, Repaske AC (1976) Environ Microbiol 32:585–591Google Scholar
  19. 19.
    Ward AC, Rowley BI, Dawes EA (1977) J Gen Microbiol 102:61–68CrossRefGoogle Scholar
  20. 20.
    Johnson K, Kleerebezem R, Van Loosdrecht MC (2010) Water Res 44:2141–2152CrossRefGoogle Scholar
  21. 21.
    Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata (2008) Laboratory analytical procedure, NREL/TP-510-42621. National Renewable Energy Laboratory, GoldenGoogle Scholar
  22. 22.
    Sluite A, Hames B, Ruiz R, Scarlata C, Sluite J, Templeton D (2010) National Renewable Energy Laboratory 17, Golden. Report No. TP-510-42618Google Scholar
  23. 23.
    Vignon MR, Garcia-Jaldon C, Dupeyre DM (1995) Int J Biol Macromol 17(6):395–404CrossRefGoogle Scholar
  24. 24.
    Yu S, Olsen CE, Marcussen J (1998) Carbohydr Res 305(1):73–82CrossRefGoogle Scholar
  25. 25.
    Templeton DW, Quinn M, Wychen VS (2012) J Chromatogr A 1270:225–234CrossRefGoogle Scholar
  26. 26.
    Ouyang J, Li Z, Li X, Ying H, Yong Q (2009) Bioresources 4:1586–1599Google Scholar
  27. 27.
    Wang Y, Chen R, Cai J, Liu Z, Zheng Y (2013) PLoS One 8(4):60318CrossRefGoogle Scholar
  28. 28.
    Ramsay JA, Berger E, Voyer R, Chavarie C, Ramsay BA (1994) Biotechnol Tech 8:589–594CrossRefGoogle Scholar
  29. 29.
    Hahn SK, Chang YK, Kim BS, Chang HN (1994) Biotechnol Bioeng 44(2):256–261CrossRefGoogle Scholar
  30. 30.
    Kim M, Cho KS, Ryu HW, Lee EG, Chang YK (2003) Biotechnol Lett 25:55–59CrossRefGoogle Scholar
  31. 31.
    Hwang KJ, You SF, Don TMJ (2006) Chin Inst Chem Eng 37:209–216Google Scholar
  32. 32.
    Zakaria MR, Ariffin H, Johar NAM, Abd-Aziz S, Nishida H, Shirai Y, Hassan MA (2010) Polym Degrad Stab 95:1382–1386CrossRefGoogle Scholar
  33. 33.
    Slepecky RA, Law JH (1960) Anal Chem 32:1697–1699CrossRefGoogle Scholar
  34. 34.
    Steffien D, Aubel I, Bertau MJ (2014) Mol Catal B Enzyme 103:29–35CrossRefGoogle Scholar
  35. 35.
    Korte S, Staiger MP (2008) Fibers Polym 9:593–603CrossRefGoogle Scholar
  36. 36.
    Batcha AFM, Prasad DMR, Khan MR, Abdullah H (2014) Bioprocess Biosyst Eng 37:943–951CrossRefGoogle Scholar
  37. 37.
    Imai M, Ikari K, Suzuki I (2004) Biochem Eng J 17:79–83CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Sun W, Wang H, Geng A (2013) Bioresour Technol 147:307–314CrossRefGoogle Scholar
  39. 39.
    Annamalaia N, Sivakumarb N (2016) J Biotechnol 237:13–17CrossRefGoogle Scholar
  40. 40.
    Cao W, Sun C, Liu R, Yin R, Wu X (2012) Bioresour Technol 111:215–221CrossRefGoogle Scholar
  41. 41.
    Franz A, Rehner R, Kienle A, Grammel H (2011) Lett Appl Microbiol 54:45–51CrossRefGoogle Scholar
  42. 42.
    Saito T, Kobayashi T (2002) Intracellular degradation of PHAs. In: Doi Y, Steinbuchel A (eds) Biopolymetrs, Polyester II, vol 3b. Willey-VCH, Weinheim, pp 23–40Google Scholar
  43. 43.
    Dahman Y, CU Ugwu (2014) Bioprocess Biosyst Eng 37:1561–1568CrossRefGoogle Scholar
  44. 44.
    Saratale GD, Oh MK (2015) Int J Biol Macromol 80:627–635CrossRefGoogle Scholar
  45. 45.
    Budde CF, Riede SL, Hübner F, Risch S, Popovi´c MK, Rha CK, Sinskey AJ (2011) Appl Microbiol Biotechnol 89:1611–1619CrossRefGoogle Scholar
  46. 46.
    Yu J, Stahl H (2008) Bioresour Technol 99:8042–8048CrossRefGoogle Scholar
  47. 47.
    Sandhya M, Aravind J, Kanmani P (2013) Int J Environ Sci Technol 10:10:47–54CrossRefGoogle Scholar
  48. 48.
    Gouda MK, Swellam AE, Omar SH (2001) Microbiol Res 156:201–207CrossRefGoogle Scholar
  49. 49.
    Sreekanth MS, Vijayendra SVN, Joshi GJ, Shamala TR (2013) J Food Sci Technol 50(2):404–408CrossRefGoogle Scholar
  50. 50.
    Lee SY, Choi J, Han K, Song JY (1999) Appl Environ Microbiol 65:2762–2764Google Scholar
  51. 51.
    Wang J, Yu HQ (2007) Appl Microbiol Biotechnol 75:871–878CrossRefGoogle Scholar
  52. 52.
    Ramsay AJ, Berger E, Ramsay BA, Chavari C (1990) Biotechnol Technol 4:221–226CrossRefGoogle Scholar
  53. 53.
    Byrom D (1994) In: Mobley DP (ed) Plastics from microbes: microbial synthesis of polymers and polymer precursors, vol 5. Hanser, MunichGoogle Scholar
  54. 54.
    Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Int J Biol Macromol 25:43–53CrossRefGoogle Scholar
  55. 55.
    Mohammadi M, Hassan MA, Phang L-Y, Ariffin H (2012) Biotechnol Lett 34:253–259CrossRefGoogle Scholar
  56. 56.
    Getachew A, Woldesenbet F (2016) BMC Res Notes 9(1):509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringRyerson UniversityTorontoCanada

Personalised recommendations