Advertisement

Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach

  • Viviane Astolfi
  • Angela Luiza Astolfi
  • Marcio A. Mazutti
  • Elisandra Rigo
  • Marco Di Luccio
  • Aline Frumi Camargo
  • Caroline Dalastra
  • Simone Kubeneck
  • Gislaine Fongaro
  • Helen TreichelEmail author
Research Paper

Abstract

This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5–5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml−1, 0.65 mg ml−1, and 22.64 mg ml−1, respectively, and Vmax values were 0.82 mol min−1 mg−1, 0.62 mol min−1 mg−1, and 104.17 mol min−1 mg−1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g−1 dry substrate.

Keywords

Trichoderma reesei NRRL 3652 Solid-state fermentation Saccharification Agricultural residues 

Notes

Acknowledgements

This work was supported by CAPES, CAPES-PNPD, CNPq, and FAPERGS for the financial support. This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Super Grant number PROAP and PNPD and Conselho Nacional de Desenvolvimento Científico e Tecnológico Grant number 306558/2014-9.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

References

  1. 1.
    Allesch A, Brunner PH (2014) Assessment methods for solid waste management: a literature review. Waste Manag Res 36:461–473CrossRefGoogle Scholar
  2. 2.
    Liguori R, Faraco V (2016) Bioresource technology biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour Technol 215:13–20CrossRefGoogle Scholar
  3. 3.
    Velis CA (2015) Circular economy and global secondary material supply chains. Waste Manag Res 33:389–391CrossRefGoogle Scholar
  4. 4.
    Yoo J, Alavi S, Vadlani P, Amanor-Boad V (2011) Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour Technol 102:7583–7590CrossRefGoogle Scholar
  5. 5.
    Pirota RDPB, Tonelotto M, Delabona PS, Fonseca RF, Paixão DAA, Baleeiro FCF, Bertucci Neto V, Farinas CS (2016) Bioprocess developments for cellulase production by Aspergillus oryzae cultivated under solid-state fermentation. Braz J Chem Eng 33:21–31CrossRefGoogle Scholar
  6. 6.
    Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview of fungal cellulases with an industrial perspective. J Nutr Food Sci 6:461Google Scholar
  7. 7.
    Behera SS, Rayb RC (2016) Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol 86:656–669CrossRefGoogle Scholar
  8. 8.
    Thota SP, Badiya PK, Yerram S, Vadlani PV, Pandey M, Golakoti NR, Belliraj SK, Dandamudi RB, Ramamurthy SS (2017) Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses. Renew Energy 103:766–773CrossRefGoogle Scholar
  9. 9.
    Gasparotto JM, Werle LB, Mazutti MA (2015) Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 175:560–572CrossRefGoogle Scholar
  10. 10.
    Orencio-Trejo M, Torres-Granados J, Rangel-Lara A, Beltrán-Guerrero E, García-Aguilar S, Moss-Acosta C, Valenzuela-Soto H, De la Torre-Zavala S, Gastelum-Arellanez A, Martinez A, Tiessen A, Diaz-Mireles E, Lozoya-Gloria E (2016) Cellulase and xylanase production by the Mexican strain Talaromyces stollii LV186 and its application in the saccharification of pretreated corn and sorghum stover. Bioenergy Res 9:1034–1045CrossRefGoogle Scholar
  11. 11.
    Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2013) Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130:296–305CrossRefGoogle Scholar
  12. 12.
    Waghmare PR, Kadam AA, Saratale GD, Govindwar SP (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141CrossRefGoogle Scholar
  13. 13.
    Joshi G, Pandey JK, Rana S, Rawat DS (2017) Challenges and opportunities for the application of biofuel. Renew Sustain Energy Rev 79:850–866CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506CrossRefGoogle Scholar
  15. 15.
    Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167CrossRefGoogle Scholar
  16. 16.
    Bech N, Jensen PA, Dam-Johansen K (2009) Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition. Biomass Bioenergy 33:534–537CrossRefGoogle Scholar
  17. 17.
    Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072CrossRefGoogle Scholar
  18. 18.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268CrossRefGoogle Scholar
  19. 19.
    Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270CrossRefGoogle Scholar
  20. 20.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666CrossRefGoogle Scholar
  21. 21.
    Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegrad 65:717–725CrossRefGoogle Scholar
  22. 22.
    Keston A (1956) Paper 31C, 129th meeting of the American Chemical SocietyGoogle Scholar
  23. 23.
    Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480CrossRefGoogle Scholar
  24. 24.
    Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind Crops Prod 95:704–717CrossRefGoogle Scholar
  25. 25.
    Balasundram V, Ibrahim N, Kasmani RM, Isha R, Hamid MKA, Hasbullah H, Ali RR (2018) Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil. Appl Energy 220:787–799CrossRefGoogle Scholar
  26. 26.
    Cai W, Liu R, He Y, Chai M, Cai J (2018) Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process Technol 171:308–317CrossRefGoogle Scholar
  27. 27.
    Yadav SK (2017) Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresour Technol 245:1727–1739CrossRefGoogle Scholar
  28. 28.
    Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95CrossRefGoogle Scholar
  29. 29.
    Delabona PS, Farinas CS, da Silva MR, Azzoni SF, Pradella JGC (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugarcane bagasse for on-site cellulase production. Bioresour Technol 107:517–521CrossRefGoogle Scholar
  30. 30.
    Ncube T, Howard RL, Abotsi EK, van Rensburg ELJ, Ncube I (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crops Prod 37:118–123CrossRefGoogle Scholar
  31. 31.
    Bajaj BK, Khajuria YP, Singh VP (2012) Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate. Biocatal Agric Biotechnol 1:314–320CrossRefGoogle Scholar
  32. 32.
    Song HT, Gao Y, Yang YM, Xiao WJ, Liu SH, Xia WC, Liu ZL, Yi L, Jiang ZB (2016) Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour Technol 219:710–715CrossRefGoogle Scholar
  33. 33.
    Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128CrossRefGoogle Scholar
  34. 34.
    Jain L, Agrawal D (2018) Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: a robust bioprospecting strategy for biofuel enzymes. Renew Energy 115:978–988CrossRefGoogle Scholar
  35. 35.
    Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Viviane Astolfi
    • 1
  • Angela Luiza Astolfi
    • 1
  • Marcio A. Mazutti
    • 2
  • Elisandra Rigo
    • 3
  • Marco Di Luccio
    • 4
  • Aline Frumi Camargo
    • 5
  • Caroline Dalastra
    • 5
  • Simone Kubeneck
    • 5
  • Gislaine Fongaro
    • 5
  • Helen Treichel
    • 5
    Email author
  1. 1.Department of Food EngineeringURI-Campus de ErechimErechimBrazil
  2. 2.Department of Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil
  3. 3.Department of Food EngineeringUDESC, Linha Santa TerezinhaPinhalzinhoBrazil
  4. 4.Department of Chemical and Food EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Laboratory of Microbiology and BioprocessFederal University of Fronteira SulErechimBrazil

Personalised recommendations