High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141

  • Jianying Dai
  • Zhuangfei Wang
  • Zhi-Long XiuEmail author
Research Paper


Acetoin is one of the bio-based platform chemicals and its optically pure isomers are important potential intermediates and precursors in the synthesis of novel optically active materials. (3R)-acetoin could be synthesized via enzymatic catalysis, whole-cell catalysis and fermentation. In this study a marine strain of Bacillus subtilis was isolated to produce optically pure (3R)-acetoin with glucose as carbon source. The effects of nutrients on the formation of (3R)-acetoin and conversion of glucose to (3R)-acetoin were evaluated by Plackett–Burman design, and the fermentation medium was optimized by central composite design. The impact of oxygen supply on the production of (3R)-acetoin was studied at different aeration rates. Under the optimal conditions, 83.7 g/L (3R)-acetoin with an optical purity of 99.4% was achieved by fed-batch fermentation, and the conversion of glucose to (3R)-acetoin was 91.5% of the theoretical value. The results indicate the industrial potential of this strain for (3R)-acetoin production via fermentation.


(3R)-Acetoin Medium optimization Oxygen availability Marine bacteria 



This work was supported by the National Natural Science Foundation of China (Grant no. 21476042).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    Xiao Z, Lu JR (2014) Generation of acetoin and its derivatives in foods. J Agric Food Chem 62:6487–6497CrossRefPubMedGoogle Scholar
  2. 2.
    Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu C, Shen T, Liu D, Wu J, Chen Y, Wang L, Guo K, Ying H, Ouyang P (2016) Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chem 18:2165–2174CrossRefGoogle Scholar
  4. 4.
    Tolasch T, Sölter S, Tóth M, Ruther J, Francke W (2003) (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J Chem Ecol 29(4):1045–1050CrossRefPubMedGoogle Scholar
  5. 5.
    Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, Hollmann F, Schrader J, Holtmann D (2014) Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J Mol Catal B Enzym 103:61–66CrossRefGoogle Scholar
  6. 6.
    Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, Chen F, Sun M, Lee J-K, Zhang L (2017) Efficient (3R)-acetoin production from meso-2,3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin. J Microbiol Biotechnol 27(1):92–100CrossRefPubMedGoogle Scholar
  7. 7.
    Xiao Z, Lv C, Gao C, Qin J, Ma C, Liu Z, Liu P, Li L, Xu P (2010) A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS One 5(1):e8860CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dai J-Y, Cheng L, He Q-F, Xiu Z-L (2015) High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem 50(11):1730–1734CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Li S, Liu L, Wu J (2013) Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour Technol 130:256–260CrossRefPubMedGoogle Scholar
  10. 10.
    Xiao Z, Gu R, Hou X, Zhao J-y, Zhu H, Lu JR (2017) Non-sterilized fermentative production of acetoin with 2,3-butanediol as a main byproduct from maize hydrolysate by a newly isolated thermophilic Bacillus strain. J Chem Technol Biotechnol 92:2845–2852CrossRefGoogle Scholar
  11. 11.
    Roncal T, Caballero S, Guereñu MdMDd, Rincón I, Prieto-Fernández S, Ochoa-Gómez JR (2017) Efficient production of acetoin by fermentation using the newly isolated mutant strain Lactococcus lactis subsp. lactis CML B4. Process Biochem 58:35–41CrossRefGoogle Scholar
  12. 12.
    Sun J-A, Zhang L-Y, Rao B, Shen Y-L, Wei D-Z (2012) Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol 119:94–98CrossRefPubMedGoogle Scholar
  13. 13.
    Xu Q, Xie L, Li Y, Lin H, Sun S, Guan X, Hu K, Shenb Y, Zhang L (2015) Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol 90:93–100CrossRefGoogle Scholar
  14. 14.
    Wang D, Zhou J, Chen C, Wei D, Shi J, Jiang B, Liu P, Hao J (2015) R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 42:1105–1115CrossRefPubMedGoogle Scholar
  15. 15.
    Dai J-Y, Ma L-H, Wang Z-F, Guan W-T, Xiu Z-L (2017) Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation. Bioprocess Biosyst Eng 40:423–429CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang L, Chen S, Xie H, Tian Y, Hu K (2012) Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol 87:1551–1557CrossRefGoogle Scholar
  17. 17.
    Yang T-W, Rao Z-M, Zhang X, Xu M-J, Xu Z-H, Yang S-T (2013) Effects of corn steep liquor on production of 2,3-butanediol and acetoin by Bacillus subtilis. Process Biochem 48:1610–1617CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhang S, Yong Y-C, Ji Z, Ma X, Xu Z, Chen S (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46:390–394CrossRefGoogle Scholar
  19. 19.
    Sommer B, Moeller HV, Haack M, Qoura F, Langner C, Bourenkov G, Garbe D, Loll B, Brück T (2015) Detailed structure—function correlations of Bacillus subtilis aetolactate synthase. Chembiochem 16(1):110–118CrossRefPubMedGoogle Scholar
  20. 20.
    Guo Y, Pan D, Ding H, Zhen WU, Sun Y, Zeng X (2015) Purification and characterization of α-acetolactate decarboxylase (ALDC) from newly isolated Lactococcus lactis DX. J Sci Food Agric 95:1655–1661CrossRefPubMedGoogle Scholar
  21. 21.
    Ji F, Li M, Feng Y, Wu S, Wang T, Pu Z, Wang J, Yang Y, Xue S, Bao Y (2018) Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Appl Microbiol Biotechnol 102:6479–6491CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, Li H (2014) Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 9(3):e91187CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang L, Xu Q, Zhan S, Li Y, Lin H, Sun S, Sha L, Hu K, Guan X, Shen Y (2014) A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl Microbiol Biotechnol 98:1175–1184CrossRefPubMedGoogle Scholar
  24. 24.
    Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725CrossRefPubMedGoogle Scholar
  25. 25.
    Tian Y, Fan Y, Liu J, Zhao X, Chen W (2016) Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron J Biotechn 19:41–49CrossRefGoogle Scholar
  26. 26.
    Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 182(16):4458–4465CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reents H, Munch R, Dammeyer T, Jahn D, Hartig E (2006) The FNR regulon of Bacillus subtilis. J Bacteriol 188(3):1103–1112CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mao Y, Fu J, Tao R, Huang C, Wang Z, Tang Y-J, Chen T, Zhao X (2017) Systematic metabolic engineering of Corynebacterium glutamicum for the industrial level production of optically pure D-(−)-acetoin. Green Chem 19:5691–5702CrossRefGoogle Scholar
  29. 29.
    Hao W, Ji F, Wang J, Zhang Y, Wang T, Bao Y (2014) Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis. J Mol Catal B Enzym 109:184–190CrossRefGoogle Scholar
  30. 30.
    Luo Q, Wu J, Wu M (2014) Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem 49:1223–1230CrossRefGoogle Scholar
  31. 31.
    Li L, Wei X, Yu W, Wen Z, Chen S (2017) Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: metabolic engineering and fermentation control. Process Biochem 57:35–42CrossRefGoogle Scholar
  32. 32.
    Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR (2016) Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 6:36769CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life Science and BiotechnologyDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations