Bioprocess and Biosystems Engineering

, Volume 42, Issue 2, pp 267–277 | Cite as

Insight into Pseudomonas aeruginosa pyocyanin production under low-shear modeled microgravity

  • Sunirmal Sheet
  • Yesupatham Sathishkumar
  • Mi-Sook Choi
  • Yang Soo LeeEmail author
Research Paper


Long-term space flight impairs the immune system of astronauts, rendering them vulnerable to opportunistic infections. Pseudomonas aeruginosa causes opportunistic infections, particularly in individuals with a compromised immune system; it can be a major health hazard for astronauts during space flight missions. Hence, the production of the most abundant redox active virulence factor, pyocyanin by P. aeruginosa, was assessed under low-shear modeled microgravity (LSMMG) conditions, simulated using a high aspect ratio vessel. Moreover, we evaluated changes in the expression of genes involved in pyocyanin biosynthesis and genes involved in the MexGHI-OpmD operon quorum sensing. Extracellular DNA and H2O2 production were measured, and their correlation with pyocyanin production was examined. Interestingly, the pyocyanin quantity was 2.58-fold lower in the LSMMG conditions compared to the normal gravity. LSMMG caused downregulation of the genes associated with pyocyanin biosynthesis. Interestingly, extracellular DNA and H2O2 release were significantly high in the normal gravity environment. Scanning electron microscopy revealed aggregation and elongated cells under LSMMG. Taken together, these findings suggest that LSMMG did not induce pyocyanin secretion in P. aeruginosa.


Low-shear modeled microgravity Pyocyanin Pseudomonas aeruginosa 



The SEM samples were analyzed using the JEM-2010 (JEOL) installed at the Center for University-Wide Research Facilities (CURF) at Chonbuk National University. We thank Mrs. Eun-Jin Choi at the CURF at Chonbuk National University for SEM analysis.


This research was supported by Buan RIS Resource Project (Grand no. R0001102) and funds of Chonbuk National University.

Compliance with ethical standards

Conflict of interest

Authors do not have any conflicts of interest.

Supplementary material

449_2018_2031_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 KB)
449_2018_2031_MOESM2_ESM.tif (117 kb)
Supplementary material 2 (TIF 116 KB)
449_2018_2031_MOESM3_ESM.tif (423 kb)
Supplementary material 3 (TIF 422 KB)


  1. 1.
    Iglewski BH (1996) Pseudomonas. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  2. 2.
    Rada B, Leto TL (2013) Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21:73–81CrossRefGoogle Scholar
  3. 3.
    Das T, Manefield M (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7:e46718CrossRefGoogle Scholar
  4. 4.
    Pearson JP, Passador L, Iglewski BH, Greenberg E (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci 92:1490–1494CrossRefGoogle Scholar
  5. 5.
    Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321CrossRefGoogle Scholar
  6. 6.
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci 96:11229–11234CrossRefGoogle Scholar
  7. 7.
    La Duc M, Kern R, Venkateswaran K (2004) Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158CrossRefGoogle Scholar
  8. 8.
    Bruce RJ, Ott CM, Skuratov VM, Pierson DL (2005) Microbial surveillance of potable water sources of the International Space Station. SAE Technical PaperGoogle Scholar
  9. 9.
    Reidt U, Halwig A, Muller G, Plobner L, Lugmayr V, Kharin S, Smirnov Y, Novikova N, Lenic J, Fetter V (2017) Detection of microorganisms onboard the international space station using an electronic nose. Gravit Space Res 5:89–111Google Scholar
  10. 10.
    Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12CrossRefGoogle Scholar
  11. 11.
    Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60:115–120CrossRefGoogle Scholar
  12. 12.
    Taylor GR (1993) Immune changes in humans concomitant with space flights of up to 10 days duration. Physiologist 36:S71–S74Google Scholar
  13. 13.
    Rai B, Kaur J, Catalina M (2010) Bone mineral density, bone mineral content, gingival crevicular fluid (matrix metalloproteinases. cathepsin K, osteocalcin), and salivary and serum osteocalcin levels in human mandible and alveolar bone under conditions of simulated microgravity. J Oral Sci 52:385–390CrossRefGoogle Scholar
  14. 14.
    Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554CrossRefGoogle Scholar
  15. 15.
    Aviles H, Belay T, Fountain K, Vance M, Sonnenfeld G (2003) Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. J Appl Physiol 95:73–80CrossRefGoogle Scholar
  16. 16.
    Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 77:1221–1230CrossRefGoogle Scholar
  17. 17.
    Taylor PW (2015) Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 8:249CrossRefGoogle Scholar
  18. 18.
    Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68:3147–3152CrossRefGoogle Scholar
  19. 19.
    Wilson J, Ott C, Zu Bentrup KH, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci 104:16299–16304CrossRefGoogle Scholar
  20. 20.
    Crabbé A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P (2008) Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 10:2098–2110CrossRefGoogle Scholar
  21. 21.
    Crabbé A, Ledesma MA, Ott CM, Nickerson CA (2016) Response of Pseudomonas aeruginosa to spaceflight and spaceflight analogue culture: implications for astronaut health and the clinic. Effect of spaceflight and spaceflight analogue culture on human and microbial cells. Springer, BerlinGoogle Scholar
  22. 22.
    Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P (2010) Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 12:1545–1564Google Scholar
  23. 23.
    Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163CrossRefGoogle Scholar
  24. 24.
    England L, Gorzelak M, Trevors J (2003) Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim Biophys Acta (BBA) Gen Subj 1624:76–80CrossRefGoogle Scholar
  25. 25.
    Dingemans J, Monsieurs P, Yu S-H, Crabbé A, Förstner KU, Malfroot A, Cornelis P, Van Houdt R (2016) Effect of shear stress on pseudomonas aeruginosa isolated from the cystic fibrosis lung. MBio 7:e00813–e00816CrossRefGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408CrossRefGoogle Scholar
  27. 27.
    Nowroozi J, Sepahi AA, Rashnonejad A (2012) Pyocyanine biosynthetic genes in clinical and environmental isolates of Pseudomonas aeruginosa and detection of pyocyanine’s antimicrobial effects with or without colloidal silver nanoparticles. Cell J (Yakhteh) 14:7Google Scholar
  28. 28.
    Zheng L, Chen Z, Itzek A, Ashby M, Kreth J (2011) Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis. J Bacteriol 193:516–526CrossRefGoogle Scholar
  29. 29.
    Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465CrossRefGoogle Scholar
  30. 30.
    Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381CrossRefGoogle Scholar
  31. 31.
    Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE (2005) Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun 73:2958–2966CrossRefGoogle Scholar
  32. 32.
    Aendekerk S, Diggle SP, Song Z, Høiby N, Cornelis P, Williams P, Camara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125CrossRefGoogle Scholar
  33. 33.
    Kobayashi K, Tagawa S (2004) Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J Biochem 136:607–615CrossRefGoogle Scholar
  34. 34.
    Ramos I, Dietrich LE, Price-Whelan A, Newman DK (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161:187–191CrossRefGoogle Scholar
  35. 35.
    Jayaseelan S, Ramaswamy D, Dharmaraj S (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30:1159–1168CrossRefGoogle Scholar
  36. 36.
    Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361CrossRefGoogle Scholar
  37. 37.
    Sathishkumar Y, Velmurugan N, Lee HM, Rajagopal K, Im CK, Lee YS (2014) Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum. Antonie Van Leeuwenhoek 106:197–209CrossRefGoogle Scholar
  38. 38.
    Fang A, Pierson D, Koenig D, Mishra S, Demain A (1997) Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol 63:4090–4092Google Scholar
  39. 39.
    Fang A, Pierson D, Mishra S, Demain A (2000) Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 54:33–36CrossRefGoogle Scholar
  40. 40.
    Abshire CF, Prasai K, Soto I, Shi R, Concha M, Baddoo M, Flemington EK, Ennis DG, Scott RS, Harrison L (2016) Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. NPJ Microgravity 2:16038CrossRefGoogle Scholar
  41. 41.
    Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson CA (2002) Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 68:5408–5416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sunirmal Sheet
    • 1
  • Yesupatham Sathishkumar
    • 1
    • 2
  • Mi-Sook Choi
    • 1
  • Yang Soo Lee
    • 1
    Email author
  1. 1.Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National UniversityJeonju-siRepublic of Korea
  2. 2.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations