Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 1, pp 131–141 | Cite as

Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids

  • Chadathorn Inyai
  • Panitch Boonsnongcheep
  • Jukrapun Komaikul
  • Boonchoo Sritularak
  • Hiroyuki Tanaka
  • Waraporn PutalunEmail author
Research Paper
  • 105 Downloads

Abstract

Morus alba L. (Moraceae) has been used in traditional medicine for the treatment of several illnesses. Recent research also revealed several pharmacological activities from many groups of secondary metabolites, including the stilbenoids mulberroside A, oxyresveratrol, and resveratrol, which are promising compounds for cosmetic and herbal supplement products. In our previous study, cell cultures of M. alba showed high productivity of these compounds. In this study, we attempted to develop immobilized cell cultures of M. alba and to test the effect of elicitors and precursors on the production of stilbenoids. The immobilization of the M. alba cells significantly promoted the secretion of mulberroside A into the extracellular matrix and culture media to 60%, while enhancing the level of oxyresveratrol and resveratrol by 12- and 27-fold, respectively. The elicitation of immobilized cells with a combination of 50 µM methyl jasmonate and 0.5 mg/mL yeast extract for 24 h promoted a twofold increase in the production of all three stilbenoids. Furthermore, the addition of 0.05 mM l-phenylalanine, 0.03 mM l-tyrosine, or a combination resulted in the enhancement of mulberroside A production for up to twofold. The addition of l-tyrosine significantly enhanced the production of oxyresveratrol and resveratrol. This is the first report of stilbenoid production using immobilized cell cultures of M. alba. The cultures have benefits over normal cell suspension cultures by promoting the secretion of mulberroside A and enhancing the levels of oxyresveratrol and resveratrol. Thus, it could be a candidate method for the production of these stilbenoids.

Keywords

Plant tissue culture Immobilization Stilbenoids Elicitation Precursor feeding 

Notes

Acknowledgements

The authors wish to thank the National Research Council of Thailand and the Japan Society for the Promotion of Sciences (NRCT-JSPS) joint research program; the Graduate School, Khon Kaen University; the Faculty of Pharmaceutical Sciences, Khon Kaen University; and a scholarship under the Postdoctoral Training Program from the Research Affairs and Graduate School, Khon Kaen University, Thailand (Grant no. 58439-2).

References

  1. 1.
    Chan EW-C, Lye P-Y, Wong S-K (2016) Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med 14(1):17–30Google Scholar
  2. 2.
    Wei H (2015) Morus alba L. 桑 (Sang, White Mulberry). In: Liu Y, Wang Z, Zhang J (eds) Dietary Chinese herbs: chemistry, pharmacology and clinical evidence. Springer Vienna, Vienna, pp 721–730CrossRefGoogle Scholar
  3. 3.
    Maneechai S, De-Eknamkul W, Umehara K, Noguchi H, Likhitwitayawuid K (2012) Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry 81:42–49CrossRefGoogle Scholar
  4. 4.
    Chen Y-C, Tien Y-J, Chen C-H, Beltran FN, Amor EC, Wang R-J, Wu D-J, Mettling C, Lin Y-L, Yang W-C (2013) Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern Med 13(1):45CrossRefGoogle Scholar
  5. 5.
    Halls C, Yu O (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 26(2):77–81CrossRefGoogle Scholar
  6. 6.
    Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851CrossRefGoogle Scholar
  7. 7.
    Komaikul J, Kitisripanya T, Tanaka H, Sritularak B, Putalun W (2015) Enhanced mulberroside A production from cell suspension and root cultures of Morus alba using elicitation. Nat Prod Commun 10(7):1253–1256Google Scholar
  8. 8.
    Smetanska I (2008) Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UEB, Nevoigt E (eds) Food biotechnology. Springer, Berlin, pp 187–228CrossRefGoogle Scholar
  9. 9.
    Buitelaar RM, Tramper J (1992) Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J Biotechnol 23(2):111–141CrossRefGoogle Scholar
  10. 10.
    Komaikul J, Kitisripanya T, Tanaka H, Sritularak B, Putalun W (2014) Development of an enzyme-linked immunosorbent assay for specific detection of mulberroside a in mulberry (Morus alba L.) using anti-mulberroside a polyclonal antibody. Food Anal Methods 7(1):58–63CrossRefGoogle Scholar
  11. 11.
    Inyai C, Komaikul J, Kitisripanya T, Tanaka H, Sritularak B, Putalun W (2015) Development of a rapid immunochromatographic strip test for the detection of mulberroside A. Phytochem Anal 26(6):423–427CrossRefGoogle Scholar
  12. 12.
    Sritularak B, De-Eknamkul W, Likhitwitayawuid K (1998) Tyrosinase inhibitors from Artocarpus lakoocha. Thai J Pharm Sci 22:149–155Google Scholar
  13. 13.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  14. 14.
    Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum l.). J Plant Physiol 141(2):147–152CrossRefGoogle Scholar
  15. 15.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254CrossRefGoogle Scholar
  16. 16.
    Shimazaki M, Hano Y, Nomura T (2000) Non-discriminatory incorporation of l-phenylalanine and l-tyrosine into cinnamoyl part of mulberroside A, a stilbene di-glucoside, in Morus alba cell cultures. Naturwissenschaften 87(12):546–548CrossRefGoogle Scholar
  17. 17.
    Dubrovina AS, Kiselev KV (2017) Regulation of stilbene biosynthesis in plants. Planta 246(4):597–623CrossRefGoogle Scholar
  18. 18.
    Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30(5):475–481CrossRefGoogle Scholar
  19. 19.
    Jin KD, Nam CH (1990) Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnol Bioeng 36(5):460–466CrossRefGoogle Scholar
  20. 20.
    Gilleta F, Roisin C, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN, Nava-Saucedo JE (2000) Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzym Microb Technol 26(2):229–234CrossRefGoogle Scholar
  21. 21.
    Salima B, Elisabet M, Javier P, Mercedes MCR, Regine B, Teresa E PM (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89(6):647–655CrossRefGoogle Scholar
  22. 22.
    Chu M, Almagro L, Chen B, Burgos L, Pedreño MA (2018) Recent trends and comprehensive appraisal for the biotechnological production of trans-resveratrol and its derivatives. Phytochem Rev 17(3):491–508CrossRefGoogle Scholar
  23. 23.
    Donnez D, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27(12):706–713CrossRefGoogle Scholar
  24. 24.
    Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31(1):81–89CrossRefGoogle Scholar
  25. 25.
    Belchí-Navarro S, Almagro L, Sabater-Jara AB, Fernández-Pérez F, Bru R, Pedreño MA (2013) Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 62:107–110CrossRefGoogle Scholar
  26. 26.
    Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1(1):132CrossRefGoogle Scholar
  27. 27.
    Philippe J, Bertrand D, Alexandra C, David D, Vitale N, Sylvain C, Christophe C, Eric C (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 36(5):331–341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chadathorn Inyai
    • 1
    • 2
  • Panitch Boonsnongcheep
    • 1
    • 2
  • Jukrapun Komaikul
    • 1
    • 2
  • Boonchoo Sritularak
    • 3
  • Hiroyuki Tanaka
    • 4
  • Waraporn Putalun
    • 1
    • 2
    Email author
  1. 1.Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  2. 2.Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research UniversityKhon Kaen UniversityKhon KaenThailand
  3. 3.Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  4. 4.Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations