Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 1, pp 83–92 | Cite as

Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae

  • Fernanda Roberta Rech
  • Roselei Claudete Fontana
  • Carlos A. Rosa
  • Marli Camassola
  • Marco Antônio Záchia Ayub
  • Aldo J. P. Dillon
Research Paper

Abstract

The present study evaluated 13 strains of yeast for ethanol and xylitol production from xylose. Among them, Spathaspora hagerdaliae UFMG-CM-Y303 produced ethanol yields (YP/S) of 0.25 g g− 1 and 0.39 g g− 1 under aerobic and microaerophilic conditions, respectively, from a mixture of glucose and xylose in flasks. A pH of 5.0 and an inoculum of 3.0 × 108 cells mL− 1r resulted in the highest ethanol yields. These conditions were tested in a bioreactor for fermenting a medium containing an enzymatic hydrolysate of sugarcane bagasse with 15.5 g L− 1 of glucose and 3 g L− 1 of xylose, and achieved a YP/S of 0.47 g g− 1, in relation to total available sugar. These results suggest that S. hagerdaliae UFMG-CM-Y303 has potential for use in second-generation ethanol studies.

Keywords

Lignocellulosic biomass Xylose Second-generation ethanol Biorefinery 

Notes

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Universidade de Caxias do Sul (UCS) scholarship and structural support. This research was supported by grants from Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul FAPERGS (10/1972-5), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (310177/2011-1).

References

  1. 1.
    Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24CrossRefGoogle Scholar
  2. 2.
    Huang R, Su R, Qi W, He Z (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. BioEnerg Res 4:225–245CrossRefGoogle Scholar
  3. 3.
    dos Reis L, Schneider W, Fontana R, Camassola M, Dillon AP (2014) Cellulase and xylanase expression in response to different pH levels of Penicillium echinulatum S1M29 medium. BioEnerg Res 7:60–67CrossRefGoogle Scholar
  4. 4.
    Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875CrossRefGoogle Scholar
  5. 5.
    Wang L, Quiceno R, Price C, Malpas R, Woods J (2014) Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward. Renew Sust Energ Rev 40:571–582CrossRefGoogle Scholar
  6. 6.
    Sharma NK, Behera S, Arora R, Kumar S (2016) Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosyst Eng 39:835–843CrossRefGoogle Scholar
  7. 7.
    Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953CrossRefGoogle Scholar
  8. 8.
    Martiniano SE, Chandel AK, Soares LCSR, Pagnocca FC, da Silva SS (2013) Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. J Biotech 3:345–352Google Scholar
  9. 9.
    Gong C-S, Claypool TA, McCracken LD, Maun CM, Ueng PP, Tsao GT (1983) Conversion of pentoses by yeasts. ‎Biotechnol Bioeng 25:85–102CrossRefGoogle Scholar
  10. 10.
    Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214CrossRefGoogle Scholar
  11. 11.
    Ma M, Liu ZL, Moon J (2012) Genetic engineering of inhibitor-tolerant saccharomyces cerevisiae for improved xylose utilization in ethanol production. BioEnerg Res 5:459–469CrossRefGoogle Scholar
  12. 12.
    Kim DM, Choi S-H, Ko BS et al (2012) Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. ‎Biotechnol Bioeng 35:183–189Google Scholar
  13. 13.
    Wilkins MR, Mueller M, Eichling S, Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43:346–350CrossRefGoogle Scholar
  14. 14.
    Lu ZT, Lin SX, Zhang DW, H D (2013) Screening of microorganisms capable of producing ethanol by direct fermentation of D-xylose. Appl Mech Mater 2:230–233CrossRefGoogle Scholar
  15. 15.
    Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2012) Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energ 37:259–265CrossRefGoogle Scholar
  16. 16.
    Hande A, Mahajan S, Prabhune A (2013) Evaluation of ethanol production by a new isolate of yeast during fermentation in synthetic medium and sugarcane bagasse hemicellulosic hydrolysate. Ann Microbiol 63:63–70CrossRefGoogle Scholar
  17. 17.
    Kudahettige RL, Holmgren M, Imerzeel P, Sellstedt A (2012) Characterization of Bioethanol Production from Hexoses and Xylose by the White Rot Fungus Trametes versicolor. BioEnerg Res 5:277–285CrossRefGoogle Scholar
  18. 18.
    Furlan SA, Bouilloud P, de Castro HF (1994) Influence of oxygen on ethanol and xylitol production by xylose fermenting yeasts. Process Biochem 29:657–662CrossRefGoogle Scholar
  19. 19.
    Ha SJ, Galazka JM, Kim SR et al (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509CrossRefGoogle Scholar
  20. 20.
    du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956CrossRefGoogle Scholar
  21. 21.
    Stambuk BU, Franden MA, Singh A, Zhang M (2003) D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:255–263CrossRefGoogle Scholar
  22. 22.
    Cadete RM, Santos RO, Melo MA et al (2009) Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342CrossRefGoogle Scholar
  23. 23.
    Fromanger R, Guillouet SE, Uribelarrea JL, Molina-Jouve C, Cameleyre X (2010) Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose. J Ind Microbiol Biotechnol 37:437–445CrossRefGoogle Scholar
  24. 24.
    Verbelen PJ, Dekoninck TM, Saerens SM, Van Mulders SE, Thevelein JM, Delvaux FR (2009) Impact of pitching rate on yeast fermentation performance and beer flavour. Appl Microbiol Biotechnol 82:155–167CrossRefGoogle Scholar
  25. 25.
    Edelen CL, Miller JL, Patino H (1996) Effects of yeast pitch rates on fermentation performance and beer quality. Master Brew Assoc Am 33:30–32Google Scholar
  26. 26.
    Hickert LR, da Cunha-Pereira F, de Souza-Cruz PB, Rosa CA, Ayub MA (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514CrossRefGoogle Scholar
  27. 27.
    Hickert LR, de Souza-Cruz PB, Rosa CA, Ayub MA (2013) Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour Technol 143:112–116CrossRefGoogle Scholar
  28. 28.
    Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum.. Appl Environ Microbiol 78:5492–5500CrossRefGoogle Scholar
  29. 29.
    Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, Aguilar-Uscanga MG (2012) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87:263–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fernanda Roberta Rech
    • 1
  • Roselei Claudete Fontana
    • 1
  • Carlos A. Rosa
    • 2
  • Marli Camassola
    • 1
  • Marco Antônio Záchia Ayub
    • 3
  • Aldo J. P. Dillon
    • 1
  1. 1.Enzymes and Biomass Laboratory, Biotechnology InstituteUniversity of Caxias do SulCaxias do SulBrazil
  2. 2.Biological Science InstituteFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Biotechnology and Biochemical Engineering Laboratory (BiotecLab)Federal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations