Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 11, pp 1561–1571 | Cite as

Treatment of thermophilic hydrolysis reactor effluent with ceramic microfiltration membranes

  • Marc Tuczinski
  • Florencia Saravia
  • Harald Horn
Research Paper
  • 98 Downloads

Abstract

For an undisturbed operation of two-stage high-pressure fermentation up to 100 bar, a particle-free hydrolysate appears to be necessary. This is even more important if the second stage, i.e., the methane reactor, is designed as fixed bed. Here, we present the potential of microfiltration membranes as separation unit after the first stage, which is the hydrolysis. The study included the selection of membrane material, membrane performance investigations, and long-term-behavior during the filtration period. In a series of experiments, the optimum type of membrane material and the mode of operation [either crossflow (CF) or submerged (S)] were determined. Ceramic membranes proved to be the better option to treat the process stream due to their chemical and temperature resistance. The crossflow filtration achieved a sustainable flux of up to 33 L/(m2 h), while long-term experiments with the submerged membranes confirmed a critical flux of 7 L/(m2 h). Comparative analyses of hydrolysate and permeate showed that the rejected chemical oxygen demand (COD) as well as total organic carbon (TOC) fraction and thereby the loss of organic carbon in the permeate does not reduce the methane yield.

Keywords

Microfiltration Ceramic membranes Thermophilic treatment Anaerobic filtration Hydrolysis reactor High-pressure fermentation 

Notes

Acknowledgements

This research was supported by the German Ministry for Education and Research (BMBF), funding code 03EK3526B.

References

  1. 1.
    Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Biores Technol 200:470–476.  https://doi.org/10.1016/j.biortech.2015.10.052 CrossRefGoogle Scholar
  2. 2.
    Zielonka S, Lemmer A, Oechsner H, Jungbluth T (2010) Energy balance of a two-phase anaerobic digestion process for energy crops. Eng Life Sci 10(6):515–519.  https://doi.org/10.1002/elsc.201000071 CrossRefGoogle Scholar
  3. 3.
    Lemmer A, Chen Y, Lindner J, Wonneberger AM, Zielonka S, Oechsner H, Jungbluth T (2015) Influence of different substrates on the performance of a two-stage high pressure anaerobic digestion system. Biores Technol 178:313–318.  https://doi.org/10.1016/j.biortech.2014.09.118 CrossRefGoogle Scholar
  4. 4.
    Merkle W, Baer K, Haag NL, Zielonka S, Ortloff F, Graf F, Lemmer A (2017) High-pressure anaerobic digestion up to 100 bar: influence of initial pressure on production kinetics and specific methane yields. Environ Technol 38(3):337–344.  https://doi.org/10.1080/09593330.2016.1192691 CrossRefPubMedGoogle Scholar
  5. 5.
    Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A (2017) Influence of pressures up to 50 bar on two-stage anaerobic digestion. Biores Technol 232:72–78.  https://doi.org/10.1016/j.biortech.2017.02.013 CrossRefGoogle Scholar
  6. 6.
    Abeynayaka A, Visvanathan C (2011) Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater. Biores Technol 102(9):5345–5352.  https://doi.org/10.1016/j.biortech.2010.11.079 CrossRefGoogle Scholar
  7. 7.
    Duncan J, Bokhary A, Fatehi P, Kong F, Lin H, Liao B (2017) Thermophilic membrane bioreactors: A review. Biores Technol 243:1180–1193.  https://doi.org/10.1016/j.biortech.2017.07.059 CrossRefGoogle Scholar
  8. 8.
    Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Biores Technol 102(22):10377–10385.  https://doi.org/10.1016/j.biortech.2011.09.012 CrossRefGoogle Scholar
  9. 9.
    van Lier JB, Hulsbeek J, Stams AJM, Lettinga G (1993) Temperature susceptibility of thermophilic methanogenic sludge: Implications for reactor start-up and operation. Biores Technol 43(3):227–235.  https://doi.org/10.1016/0960-8524(93)90035-A CrossRefGoogle Scholar
  10. 10.
    Van Lier JB, Martin JLS, Lettinga G (1996) Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res 30(1):199–207.  https://doi.org/10.1016/0043-1354(95)00107-V CrossRefGoogle Scholar
  11. 11.
    Lee S-m, Jung J-y, Chung Y-c (2001) Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Res 35(2):471–477.  https://doi.org/10.1016/S0043-1354(00)00255-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Jeison D, van Lier JB (2007) Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux. Water Res 41(17):3868–3879.  https://doi.org/10.1016/j.watres.2007.06.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Jeison D, van Lier JB (2008) Feasibility of thermophilic anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment. Desalination 231(1–3):227–235.  https://doi.org/10.1016/j.desal.2007.11.048 CrossRefGoogle Scholar
  14. 14.
    Jeison D, Telkamp P, van Lier JB (2009) Thermophilic sidestream anaerobic membrane bioreactors: the shear rate dilemma. Water Environ Res 81(11):2372–2380.  https://doi.org/10.2175/106143009X426040 CrossRefPubMedGoogle Scholar
  15. 15.
    Qiao W, Takayanagi K, Niu Q, Shofie M, Li YY (2013) Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Biores Technol 149:92–102.  https://doi.org/10.1016/j.biortech.2013.09.023 CrossRefGoogle Scholar
  16. 16.
    Qiao W, Takayanagi K, Shofie M, Niu Q, Yu HQ, Li Y-Y (2013) Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Biores Technol 150:249–258.  https://doi.org/10.1016/j.biortech.2013.10.002 CrossRefGoogle Scholar
  17. 17.
    Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Biores Technol 102(9):5353–5360.  https://doi.org/10.1016/j.biortech.2010.12.081 CrossRefGoogle Scholar
  18. 18.
    Mota VT, Santos FS, Amaral MCS (2013) Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: Assessment on biological activity and filtration performance. Biores Technol 146:494–503.  https://doi.org/10.1016/j.biortech.2013.07.110 CrossRefGoogle Scholar
  19. 19.
    Chaikasem S, Jacob P, Visvanathan C (2015) Performance improvement in a two-stage thermophilic anaerobic membrane bioreactor using PVA-gel as biocarrier. Desalin Water Treatm 53(10):2839–2849.  https://doi.org/10.1080/19443994.2014.931531 CrossRefGoogle Scholar
  20. 20.
    Lindner J, Zielonka S, Oechsner H, Lemmer A (2015) Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ Technol 36(2):198–207.  https://doi.org/10.1080/09593330.2014.941944 CrossRefPubMedGoogle Scholar
  21. 21.
    Wu D, Howell JA, Field RW (1999) Critical flux measurement for model colloids. J Membr Sci 152(1):89–98.  https://doi.org/10.1016/S0376-7388(98)00200-2 CrossRefGoogle Scholar
  22. 22.
    Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100(3):259–272.  https://doi.org/10.1016/0376-7388(94)00265-Z CrossRefGoogle Scholar
  23. 23.
    Le-Clech P, Jefferson B, Chang IS, Judd SJ (2003) Critical flux determination by the flux-step method in a submerged membrane bioreactor. J Membr Sci 227(1–2):81–93.  https://doi.org/10.1016/j.memsci.2003.07.021 CrossRefGoogle Scholar
  24. 24.
    Bacchin P, Aimar P, Field RW (2006) Critical and sustainable fluxes: theory, experiments and applications. J Membr Sci 281(1):42–69.  https://doi.org/10.1016/j.memsci.2006.04.014 CrossRefGoogle Scholar
  25. 25.
    Wu J, Le-Clech P, Stuetz RM, Fane AG, Chen V (2008) Novel filtration mode for fouling limitation in membrane bioreactors. Water Res 42(14):3677–3684.  https://doi.org/10.1016/j.watres.2008.06.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Meng F, Zhang H, Yang F, Liu L (2007) Characterization of Cake Layer in Submerged Membrane Bioreactor. Environ Sci Technol 41(11):4065–4070.  https://doi.org/10.1021/es062208b CrossRefPubMedGoogle Scholar
  27. 27.
    Meng F, Shi B, Yang F, Zhang H (2007) New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts. J Membr Sci 302(1–2):87–94.  https://doi.org/10.1016/j.memsci.2007.06.030 CrossRefGoogle Scholar
  28. 28.
    VDI Society Energy and Environment (2016) VDI 4630:2016-11: Fermentation of organic materials - Characterization of the substrate, sampling, collection of material data, fermentation testsGoogle Scholar
  29. 29.
    Lin HJ, Xie K, Mahendran B, Bagley DM, Leung KT, Liss SN, Liao BQ (2009) Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Res 43(15):3827–3837.  https://doi.org/10.1016/j.watres.2009.05.025 CrossRefPubMedGoogle Scholar
  30. 30.
    Visvanathan C, Choudhary MK, Montalbo MT, Jegatheesan V (2007) Landfill leachate treatment using thermophilic membrane bioreactor. Desalination 204(1):8–16.  https://doi.org/10.1016/j.desal.2006.02.028 CrossRefGoogle Scholar
  31. 31.
    Bär K, Merkle W, Tuczinski M, Saravia F, Horn H, Ortloff F, Graf F, Lemmer A, Kolb T (2018) Development of an innovative two-stage fermentation process for high-calorific biogas at elevated pressure. Biomass Bioenerg 115:186–194.  https://doi.org/10.1016/j.biombioe.2018.04.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marc Tuczinski
    • 1
  • Florencia Saravia
    • 2
  • Harald Horn
    • 1
    • 2
  1. 1.Deutscher Verein des Gas- und Wasserfaches (DVGW)-Research Center at the Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Karlsruhe Institute of Technology (KIT), Engler-Bunte-InstitutKarlsruheGermany

Personalised recommendations