Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production

  • 346 Accesses

  • 3 Citations


Microalgae could be of importance for future biodiesel production as an alternative for a third generation of biofuels. To select the most appropriate strain for biodiesel production, three microalgae species, namely Isochrysis sp., Nannochloropsis maritima and Tetraselmis sp., isolated from Tunisian coast, were biochemically characterized. Initially, gas chromatography analysis showed that Isochrysis sp. and N. maritima contained 5- and 10-fold total fatty acids, respectively, more than Tetraselmis sp. Then, the two microalgae Isochrysis sp. and N. maritima were subject to random mutagenesis using ultraviolet-C radiation. Subsequently, a total of 18 mutants were obtained from both species. The neutral lipid evaluation on said 18 mutants allowed the retention of only 7 to further fatty acid characterization. Finally, gas chromatography revealed that the mutant 5c Isochrysis sp. was characterized by a high level of saturated fatty acids (52.3%), higher amount of monounsaturated fatty acids (29.3%), lower level of polyunsaturated fatty acids (18.4%) and a significant 1.3-fold increase in its C16–C18 content compared to the wild-type strain, which would make it an interesting candidate for biofuel production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    da Silva M, Casazza AA, Ferrari PF, Aliakbarian B, Converti A, Bezerra RP, Figueiredo Porto AL, Perego P (2017) Recovery of phenolic compounds of food concern from Arthrospira platensis by green extraction techniques. Algal Res 25:391–401. https://doi.org/10.1016/j.algal.2017.05.027

  2. 2.

    Samuelsen TA, Oterhals Å, Kousoulaki K (2018) High lipid microalgae (Schizochytrium sp.) inclusion as a sustainable source of n-3 long-chain PUFA in fish feed—effects on the extrusion process and physical pellet quality. Anim Feed Sci Technol 236:14–28. https://doi.org/10.1016/j.anifeedsci.2017.11.020

  3. 3.

    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

  4. 4.

    Gouveia L, Oliveira AC, Congestri R, Bruno L, Soares AT, Menezes RS, Tzovenis I (2018) Biodiesel from microalgae. In: Microalgae-based biofuels and bioproducts, pp 235–258

  5. 5.

    Nasreen S, Nafees M, Zeeshan M, Saleem MU, Ullah A (2018) Synthesis of heterogeneous catalyst for the production of biodiesel from soybean oil. J Fundam Appl Sci 10(1S):609–618. https://doi.org/10.4314/jfas.v10i1s.43

  6. 6.

    Varghese R, Jose S, Joyprabu H, Johnson I (2017) Ultrasonication assisted production of biodiesel from sunflower oil by using CuO:Mg heterogeneous nanocatalyst. In: IOP conference series: materials science and engineering, vol 225, no. 1, p 012213. IOP Publishing

  7. 7.

    Sakulsuraekkapong J, Pairintra R, Thepa S (2017) Potential of palm oil for biodiesel production. Energi Sources Part B Econ Plan Policy 12(11):952–957. https://doi.org/10.1080/15567249.2017.1327996

  8. 8.

    Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162(1):3–12. https://doi.org/10.1016/j.jbiotec.2012.03.017

  9. 9.

    Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioprocess Biosyst Eng 39(1):45–55. https://doi.org/10.1007/s00449-015-1487-3

  10. 10.

    Smith VH, Sturm BS, Billings SA (2010) The ecology of algal biodiesel production. Trends Ecol Evol 25(5):301–309. https://doi.org/10.1016/j.tree.2009.11.007

  11. 11.

    Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507. https://doi.org/10.1007/s10811-008-9392-7

  12. 12.

    Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, HadavandMirzaei H, Mirzajanzadeh M, MalekzadehShafaroudi S, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2(3):258–267. https://doi.org/10.1016/j.algal.2013.04.003

  13. 13.

    Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2(7):759–766. https://doi.org/10.1039/b903941d

  14. 14.

    Beacham TA, Macia VM, Rooks P, White DA, Ali ST (2015) Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnol Rep 7:87–94. https://doi.org/10.1016/j.btre.2015.05.007

  15. 15.

    Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1(1):17–21. https://doi.org/10.1016/j.algal.2012.03.001

  16. 16.

    Bougaran G, Rouxel C, Dubois N, Kaas S, Grouas S, Lukomska E, Le Coz JR, Cadoret JP (2012) Enhancement of neutral lipid productivity in the microalga Isochrysis affinis galbana (T-Iso) by a mutation-selection procedure. Biotechnol Bioeng 109(11):2737–2745. https://doi.org/10.1002/bit.24560

  17. 17.

    Lim DK, Schuhmann H, Sharma K, Schenk PM (2014) Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. BioEnergy Res 8(2):750–759. https://doi.org/10.1007/s12155-014-9553-2

  18. 18.

    Han Y, Wen Q, Chen Z, Li P (2011) Review of methods used for microalgal lipid-content analysis. Energy Procedia 12:944–950. https://doi.org/10.1016/j.egypro.2011.10.124

  19. 19.

    Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6(6):333–345. https://doi.org/10.1016/0167-7012(87)90019-4

  20. 20.

    de la Jara A, Mendoza H, Martel A, Molina C, Nordströn L, de la Rosa V, Díaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15(5):433–438. https://doi.org/10.1023/A:1026007902078

  21. 21.

    Tompkins J, Deville MM, Day JG, Turner MF (1995) Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside

  22. 22.

    Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. Algal Cultur Tech 18:269–285

  23. 23.

    Galloway RE (1990) Selective conditions and isolation of mutants in salt-tolerant, lipid-producing microalgae. J Phycol 26(4):752–760. https://doi.org/10.1111/j.0022-3646.1990.00752.x

  24. 24.

    Shapiro HM (1995) Practical flow cytometry. J Natl Cancer Inst 81(8):632–633. https://doi.org/10.1002/0471722731

  25. 25.

    Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

  26. 26.

    Griffiths MJ, Van Hille RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11):1053–1060. https://doi.org/10.1007/s10811-011-9723-y

  27. 27.

    Phatarpekar PV, Sreepada RA, Pednekar C, Achuthankutty CT (2000) A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture 181(1):141–155. https://doi.org/10.1016/S0044-8486(99)00227-6

  28. 28.

    Sommer U, Peter KH, Genitsaris S, Moustaka-Gouni M (2017) Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol Rev 92(2):1011–1026. https://doi.org/10.1111/brv.12266

  29. 29.

    Montero MF, Aristizábal M, Reina GG (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23(6):1053–1057. https://doi.org/10.1007/s10811-010-9623-6

  30. 30.

    Shah SMU, Abdullah MA (2018) Effects of macro/micronutrients on green and brown microalgal cell growth and fatty acids in photobioreactor and open-tank systems. Biocatal Agric Biotechnol 14:10–17. https://doi.org/10.1016/j.bcab.2018.01.011

  31. 31.

    da Silva MF, Casazza AA, Ferrari PF, Perego P, Bezerra RP, Converti A, Porto AL (2016) A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions. Bioresour Technol 207:220–228. https://doi.org/10.1016/j.biortech.2016.01.128

  32. 32.

    Gnouma A, Sadovskaya I, Souissi A, Sebai K, Medhioub A, Grard T, Souissi S (2017) Changes in fatty acids profile, monosaccharide profile and protein content during batch growth of Isochrysis galbana (T. iso). Aquac Res 48(9):4982–4990. https://doi.org/10.1111/are.13316

  33. 33.

    Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, David C, Matteo P, David C, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114:567–572. https://doi.org/10.1016/j.biortech.2012.02.123

  34. 34.

    Renaud SM, Thinh LV, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170(2):147–159. https://doi.org/10.1016/S0044-8486(98)00399-8

  35. 35.

    Rodolfi L, ChiniZittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033

  36. 36.

    Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28(1):1–14. https://doi.org/10.1007/s10811-015-0560-2

  37. 37.

    Ippoliti D, González A, Martín I, Sevilla JMF, Pistocchi R, Acién FG (2016) Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J Appl Phycol 28(6):3159–3166. https://doi.org/10.1007/s10811-016-0856-x

  38. 38.

    Ohse S, Derner RB, Ozório R, Corrêa RG, Furlong EB, Cunha PCR (2014) Lipid content and fatty acid profiles in ten species of microalgae. IDESIA (Chile) 33(1):93–101. https://doi.org/10.4067/S0718-34292015000100010

  39. 39.

    Qunju H, Wenzhou X, Fangfang Y, Tao L, Guanghua W (2016) Evaluation of five Nannochloropsis sp. strains for biodiesel and poly-unsaturated fatty acids (PUFAs). Prod Curr Synth Sys Biol 4(128):2332–2737. https://doi.org/10.4172/2332-0737.1000128

  40. 40.

    Zhu CJ, Lee YK, Chao TM (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J Appl Phycol 9(5):451–457. https://doi.org/10.1023/A:1007973319348

  41. 41.

    Kalnes T, Marker T, Shonnard DR (2007) Green diesel: a second generation biofuel. Int J Chem Reactor Eng 5(1):748. https://doi.org/10.2202/1542-6580.1554

  42. 42.

    Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energ Rev 16(1):143–169. https://doi.org/10.1016/j.rser.2011.07.143

  43. 43.

    Sivaramakrishnan R, Incharoensakdi A (2017) Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour Technol 235:366–370. https://doi.org/10.1016/j.biortech.2017.03.102

  44. 44.

    Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77(1):41–47. https://doi.org/10.1016/j.mimet.2009.01.001

  45. 45.

    Tripathi U, Venkateshwaran G, Sarada R, Ravishankar GA (2001) Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J Microbiol Biotechnol 17(2):143–148. https://doi.org/10.1023/A:1016609815405

  46. 46.

    Svensen Ø, Frette Ø, Erga SR (2007) Scattering properties of microalgae: the effect of cell size and cell wall. Appl Opt 46(23):5762–5769. https://doi.org/10.1364/AO.46.005762

  47. 47.

    Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 157(3):507–526. https://doi.org/10.1007/s12010-008-8298-9

  48. 48.

    Johnson ZI, Bidigare RR, Blinebry SK, Brown SL, Cullen JJ, Loftus SE, Donald G. Redalje, Courtney S, Van Mooy BA (2017) Screening for lipids from marine microalgae using Nile Red. In: Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals, pp 1–22. https://doi.org/10.1007/978-3-319-31421-1_382-1

  49. 49.

    Ritmann BE, Muylaert K, Cuaresma M, Parra R, Bosma R, Cuellar-Bermudez SP (2016) How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. J Microbiol Methods 128:74–79. https://doi.org/10.1016/j.mimet.2016.07.011

  50. 50.

    Guihéneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22(5):629–638. https://doi.org/10.1007/s10811-010-9503-0

  51. 51.

    Chaturvedi R, Uppalapati SR, Alamsjah MA, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J Appl Phycol 16(2):135–144. https://doi.org/10.1023/B:JAPH.0000044826.70360.8e

  52. 52.

    Kováčik J, Klejdus B, Bačkor M (2010) Physiological responses of Scenedesmus quadricauda (Chlorophyceae) to UV-A and UV-C light. Photochem Photobiol 86(3):612–616. https://doi.org/10.1111/j.1751-1097.2010.00708.x

  53. 53.

    Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sustain Energy Rev 55:1–16. https://doi.org/10.1016/j.rser.2015.11.001

Download references


We thank the engineers Martina Haack and Veronika Redai of the Technical University of Munich (TUM) for the GC analysis assistance.

Author information

Correspondence to Amel Medhioub.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gnouma, A., Sehli, E., Medhioub, W. et al. Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production. Bioprocess Biosyst Eng 41, 1449–1459 (2018). https://doi.org/10.1007/s00449-018-1973-5

Download citation


  • Strain selection
  • Fatty acids
  • Flow cytometry
  • Biodiesels