Bioprocess and Biosystems Engineering

, Volume 41, Issue 8, pp 1165–1175 | Cite as

A comparative study of eubacterial communities by PCR-DGGE fingerprints in anoxic and aerobic biotrickling filters used for biogas desulfurization

  • Antonio ValleEmail author
  • Maikel Fernández
  • Martín Ramírez
  • Roger Rovira
  • David Gabriel
  • Domingo Cantero
Research Paper


Biological desulfurization has proven to be a process that is technically and economically feasible on using biotrickling filters that can be performed under aerobic and anoxic conditions. However, microbial communities are different mainly due to the use of different final electron acceptors. The analysis of microbial communities in these systems has not been addressed with regard to the anoxic process. The aim of the work reported here was to analyse the eubacterial community in the two types of bioreactor along the packed bed and during the operation time. The analysis was carried out using the 16S PCR-DGGE molecular fingerprint technique. The microbial profile analysis in the aerobic bioreactor revealed that the community was more diverse and stratified compared to those obtained in the two anoxic bioreactors, influenced by environmental factors. The main OTU involved in this process is genus Thiobacillus, although different species were detected depending on each operational condition.


PCR-DGGE Biotrickling filters (BTF) Anoxic hydrogen sulfide removal Biogas Bacterial community 



The authors wish to express sincere gratitude to the Spanish Ministry of Science and Innovation and the European FEDER funds for providing financial support through the projects CTM2009-14338-C03-02 and UNCA08-1E-003. Gratitude is also due to the Iberoamerican Ph.D. Program in Sciences of the University of Cádiz.

Supplementary material

449_2018_1945_MOESM1_ESM.docx (134 kb)
Table S1. The taxonomic sequence matches found with the highest score from GenBank (NCBI) of the bands excised from DGGE and the origin of the sequences submitted (DOCX 134 KB)


  1. 1.
    Syed M, Soreanu G, Falletta P, Beland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2.1–2.14Google Scholar
  2. 2.
    Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. P Natl Acad Sci USA 100:6308–6312CrossRefGoogle Scholar
  3. 3.
    Kim S, Deshusses MA (2005) Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter. Chem Engin J 113:119–126CrossRefGoogle Scholar
  4. 4.
    Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71:10–17CrossRefPubMedGoogle Scholar
  5. 5.
    Montebello AM, Bezerra T, Rovira R, Rago L, Lafuente J, Gamisans X, Campoy S, Baeza M, Gabriel D (2013) Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. Chemosphere 93:2675–2682CrossRefPubMedGoogle Scholar
  6. 6.
    Fernández M, Ramírez M, Gómez JM, Cantero D (2014) Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J Hazard Mater 264:529–535CrossRefPubMedGoogle Scholar
  7. 7.
    Suzuki I (1999) Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions. Can J Microbiol 45:97–105CrossRefGoogle Scholar
  8. 8.
    Montebello AM, Fernández M, Almenglo F, Ramírez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202:237–246CrossRefGoogle Scholar
  9. 9.
    Fernández M, Ramírez M, Pérez RM, Gómez JM, Cantero D (2013) Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chem Eng J 225:456–463CrossRefGoogle Scholar
  10. 10.
    Almenglo F, Ramirez M, Gomez J, Cantero D (2016) Operational conditions for start-up and nitrate-feeding in an anoxic biotrickling filtration process at pilot scale. Chem Eng J 285:83–91CrossRefGoogle Scholar
  11. 11.
    Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207CrossRefPubMedGoogle Scholar
  12. 12.
    Almenglo F, Ramírez M, Gómez JM, Cantero D, Gamisans X, Dorado AD (2015) Modeling and control strategies for anoxic biotrickling filtration in biogas purification. J Chem Technol Biotechnol 91:1782–1793CrossRefGoogle Scholar
  13. 13.
    Li J, Ye G, Sun D, Sun G, Zeng X, Xu J, Liang S (2012) Performances of two biotrickling filters in treating H2S-containing waste gases and analysis of corresponding bacterial communities by pyrosequencing. Appl Microbiol Biotechnol 95:1633–1641CrossRefPubMedGoogle Scholar
  14. 14.
    Tu X, Li J, Feng R, Sun G, Guo J (2016) Comparison of removal behavior of two biotrickling filters under transient condition and effect of pH on the bacterial communities. PLoS One 11:e0155593CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maestre JP, Rovira R, Alvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D (2010) Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere 80:872–880CrossRefPubMedGoogle Scholar
  16. 16.
    Almenglo F, Bezerra T, Lafuente J, Gabriel D, Ramirez M, Cantero D (2016) Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization. Chemosphere 157:215–223CrossRefPubMedGoogle Scholar
  17. 17.
    Omri I, Bouallagui H, Aouidi F, Godon J-J, Hamdi M (2011) H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour Technol 102:10202–10209CrossRefPubMedGoogle Scholar
  18. 18.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  19. 19.
    McGuinness LM, Salganik M, Vega L, Pickering KD, Kerkhof LJ (2006) Replicability of bacterial communities in denitrifying bioreactors as measured by PCR/T-RFLP Analysis. Environ Sci Technol 40:509–515CrossRefPubMedGoogle Scholar
  20. 20.
    Show KY, Lee DJ, Pan X (2013) Simultaneous biological removal of nitrogen-sulfur-carbon: recent advances and challenges. Biotechnol Adv 31:409–420CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez JM, Simo R, Massana R, Covert JS, Casamayor EO, Pedros-Alio C, Moran MA (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing north atlantic algal bloom. Appl Environ Microbiol 66:4237–4246CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Droege M, Hill B (2008) The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136:3–10CrossRefPubMedGoogle Scholar
  24. 24.
    Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258CrossRefGoogle Scholar
  25. 25.
    Duncan KE, Sublette KL, Rider PA, Stepp A, Beitle RR, Conner JA, Kolhatkar R (2001) Analysis of a microbial community oxidizing inorganic sulfide and mercaptans. Biotechnol Prog 17:768–774CrossRefPubMedGoogle Scholar
  26. 26.
    Lee JH, Lee SM, Choi GC, Park HS, Kang DH, Park JJ (2011) Microbial community analysis in the autotrophic denitrification process using spent sulfidic caustic by denaturing gradient gel electrophoresis of PCR-amplified genes. Water Sci Technol 63:475–483CrossRefPubMedGoogle Scholar
  27. 27.
    Luo J, Tian G, Lin W (2013) Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor. J Environ Sci 25:1393–1399CrossRefGoogle Scholar
  28. 28.
    Portillo MC, Villahermosa D, Corzo A, Gonzalez JM (2011) Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 77:351–354CrossRefPubMedGoogle Scholar
  29. 29.
    Shao M-F, Zhang T, Fang HH-P (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88:1027–1042CrossRefPubMedGoogle Scholar
  30. 30.
    Simmons S, Norris R (2002) Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6:201–207CrossRefPubMedGoogle Scholar
  31. 31.
    Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023CrossRefPubMedGoogle Scholar
  32. 32.
    Okabe S, Ito T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71:2520–2529CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kellermann C, Selesi D, Lee N, Hugler M, Esperschutz J, Hartmann A, Griebler C (2012) Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 81:172–187CrossRefPubMedGoogle Scholar
  34. 34.
    Fortuny M, Gamisans X, Deshusses MA, Lafuente J, Casas C, Gabriel D (2011) Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters. Water Res 45:5665–5674CrossRefPubMedGoogle Scholar
  35. 35.
    Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vardanyan NS, Vardanyan AK, Sequences G, Albertensis A (2014) New sulphur oxidizing bacteria isolated from bioleaching pulp of zinc and copper concentrates. Univers J Microbiol Res 2:27–31Google Scholar
  38. 38.
    Kaiya S, Utsunomiya S, Suzuki S, Yoshida N, Futamata H, Yamada T, Hiraishi A (2012) Isolation and functional gene analyses of aromatic-hydrocarbon-degrading bacteria from a polychlorinated-dioxin-dechlorinating process. Microbes Environ 27:127–135CrossRefGoogle Scholar
  39. 39.
    Maestre JP, Rovira R, Gamisans X, Kinney KA, Kirisits MJ, Lafuente J, Gabriel D (2009) Characterization of the bacterial community in a biotrickling filter treating high loads of H2S by molecular biology tools. Water Sci Technol 59:1331–1337CrossRefPubMedGoogle Scholar
  40. 40.
    Lim JH, Baek SH, Lee ST (2009) Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family ‘Chitinophagaceae’ in the phylum Bacteroidetes, isolated from freshwater sediment. Int J Syst Evol Microbiol 59:2394–2399CrossRefPubMedGoogle Scholar
  41. 41.
    Green PN (2005) Bergey’s Manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-Google Scholar
  42. 42.
    Drobner E, Huber H, Rachel R, Stetter K (1992) Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217CrossRefPubMedGoogle Scholar
  43. 43.
    Cunha S, Tiago I, Pires AL, Da Costa MS, Veríssimo A (2006) Dokdonella fugitiva sp. nov., a Gammaproteobacterium isolated from potting soil. Syst Appl Microbiol 29:191–196CrossRefPubMedGoogle Scholar
  44. 44.
    Yoo SH, Weon HY, Anandham R, Kim BY, Hong SB, Jeon YA, Koo BS, Kwon SW (2009) Dokdonella soli sp. nov., a gammaproteobacterium isolated from soil. Int J Syst Evol Microbiol 59:1965–1968CrossRefPubMedGoogle Scholar
  45. 45.
    Yoon JH, Kang SJ, Oh TK (2006) Dokdonella koreensis gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:145–150CrossRefPubMedGoogle Scholar
  46. 46.
    Makk J, Homonnay ZG, Kéki Z, Lejtovicz Z, Márialigeti K, Spröer C, Schumann P, Tóth EM (2011) Tahibacter aquaticus gen. nov., sp. nov., a new gammaproteobacterium isolated from the drinking water supply system of Budapest (Hungary). Syst Appl Microbiol 34:110–115CrossRefPubMedGoogle Scholar
  47. 47.
    Kelly D, Wood A, Stackebrandt E (2005) Thiobacillus Beijerinck 1904b, 597AL. In: Brenner DJ, Krieg NR, Garrity GM, Staley JT, Boone DR, Vos P, Goodfellow M, Rainey FA, Schleifer K-H (eds) Springer USGoogle Scholar
  48. 48.
    Lebrero R, Rodríguez E, Estrada JM, García-Encina PA, Muñoz R (2012) Odor abatement in biotrickling filters: effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresour Technol 109:38–45CrossRefPubMedGoogle Scholar
  49. 49.
    Krieg N, Ludwig W, Euzéby J, Whitman W (2010) Phylum XIV. Bacteroidetes phyl. nov. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Springer, New YorkGoogle Scholar
  50. 50.
    Sorokin DY, Tourova TP, Bezsoudnova EY, Pol A, Muyzer G (2007) Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov.—a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 187:441–450CrossRefPubMedGoogle Scholar
  51. 51.
    Wentzien SW, Sand W (2004) Tetrathionate disproportionation by Thiomonas intermedia K12. Eng Life Sci 4:25–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular BiologyUniversity of Cádiz, Instituto Universitario de Investigación Vitivinícola y Agroalimentario (IVAGRO)Puerto RealSpain
  2. 2.Department of Chemical Engineering and Food Technologies, Faculty of SciencesUniversity of Cádiz, Instituto Universitario de Investigación Vitivinícola y Agroalimentario (IVAGRO)Puerto RealSpain
  3. 3.GENOCOV Research Group, Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations