Bioprocess and Biosystems Engineering

, Volume 39, Issue 9, pp 1435–1440 | Cite as

A biotransformation process for the production of cucurbitacin B from its glycoside using a selected Streptomyces sp.

  • Jianfeng Mei
  • Sha Li
  • Hang Jin
  • Lan Tang
  • Yu Yi
  • Hong Wang
  • Guoqing YingEmail author
Original Paper


Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-d-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.


Cucurbitacin B 2-o-β-d-glucoside Cucurbitacin B Biotransformation Streptomyces sp. 



The authors gratefully acknowledge the financial support from the Natural Science Foundation of Zhejiang Province (Grant No. LY13B020011).


  1. 1.
    Jayaprakasam B, Seeram NP, Nair MG (2003) Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 189:11–16CrossRefGoogle Scholar
  2. 2.
    Lee DH, Iwanski GB, Thoennissen NH (2010) Cucurbitacin: ancient compound shedding new light on cancer treatment. Sci World J 10:413–418CrossRefGoogle Scholar
  3. 3.
    Ríos JL, Andújar I, Escandell JM, Giner RM, Recio MC (2012) Cucurbitacins as inducers of cell death and a rich source of potential anticancer compounds. Curr Pharm Des 18:1663–1676CrossRefGoogle Scholar
  4. 4.
    Chen W, Leiter A, Dong Y, Meiring M, Louw VJ, Koeffler HP (2010) Cucurbitacin B inhibits growth, arrests the cell cycle, and potentiates antiproliferative efficacy of cisplatin in cutaneous squamous cell carcinoma cell lines. Int J Oncol 37:737–743Google Scholar
  5. 5.
    Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, Song JH, Yin D, Toh M, Xie WD, Said JW, Koeffler HP (2009) Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 69:5876–5884CrossRefGoogle Scholar
  6. 6.
    Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J, Xing H, Koeffler HP (2008) Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 99:1793–1797CrossRefGoogle Scholar
  7. 7.
    Ma J, Zi Jiang Y, Shi H, Mi C, Li J, Xing Nan J, Wu X, Joon Lee J, Jin X (2014) Cucurbitacin B inhibits the translational expression of hypoxia-inducible factor-1α. Eur J Pharmacol 723:46–54CrossRefGoogle Scholar
  8. 8.
    Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22:386–399CrossRefGoogle Scholar
  9. 9.
    Agil A, Miro M, Jimenez J, Aneiros J, Caracuel MD, Garcia-Granados A, Navarro MC (1999) Isolation of anti-hepatotoxic principle form the juice of Ecballium elaterium. Planta Med 65:673–675CrossRefGoogle Scholar
  10. 10.
    Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRefGoogle Scholar
  11. 11.
    Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, Sathiyanarayanan G, Park SH, Park K, Yang YH (2015) Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioproc Biosyst Eng 38:2315–2322CrossRefGoogle Scholar
  12. 12.
    Muluka H, Sheelu G, Nageshwar YV (2016) Bioconversion of iminodiacetonitrile to iminodiacetic acid with whole cells of Lysinibacillus boronitolerans MTCC 107614 (IICT-akl252). Bioproc Biosyst Eng. doi: 10.1007/s00449-015-1524-2 Google Scholar
  13. 13.
    Muffler K, Leipold D, Scheller MC, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R (2011) Biotransformation of triterpenes. Process Biochem 46:1–15CrossRefGoogle Scholar
  14. 14.
    Gao Y, Cai RL, Xie C, Lin YL, Zhang L, Qi Y (2012) Pharmacological basis for the medicinal use of muskmelon base (Pedicellus Melo.) for abdominal distention and constipation. J Ethnopharmacol 142:129–135CrossRefGoogle Scholar
  15. 15.
    Muñoz Solano D, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jianfeng Mei
    • 1
  • Sha Li
    • 1
  • Hang Jin
    • 1
  • Lan Tang
    • 1
  • Yu Yi
    • 1
  • Hong Wang
    • 1
  • Guoqing Ying
    • 1
    Email author
  1. 1.College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouChina

Personalised recommendations