Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment

Abstract

The present study summarizes the designing of a green transducer phase based on nano-cerium oxide (CeO2) decorated reduced graphene oxide (RGO) reinforced chitosan nanocomposites as an effective enzyme immobilizer and bio-sensing matrix for glucose analyte. Also, it scrutinizes the biocompatibility and cell viability of the synthesized nanohybrid with human fibroblastic macrophage cell line. CeO2 nanoparticles (NPs) were successfully grown on graphene nanosheet in the presence of cationic surfactant followed by facile hydrothermal treatment. The eventual growth of synthesized CeO2 nanocrystals on the graphene layer was confirmed from X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman analysis. The biocompatibility of the synthesized nanohybrid was also evident from the MTT assay. Glucose oxidase (GOx) was employed on the green polymer nanocomposites modified FTO electrode to fabricate an enzymatic bioelectrode. The electroanalytical response of the GOx/nano-CeO2/RGO/CS/FTO bioelectrode towards electrooxidation of glucose analyte was investigated by electrochemical impedance (EIS) and cyclic voltammetry (CV) study. The resulting biosensor exhibited a good electrochemical response to glucose within the linear detection range of 0.05–6.5 mM with a low detection limit of 2 μM and a sensitivity of 7.198 μA mM−1 cm−2. The bioelectrode also showed good shelf life (~10 weeks) and negligible interfering ability under controlled environment. The obtained results indicate that nano-CeO2/RGO nanohybrid based chitosan nanocomposites achieve a biocompatible biosensing platform for effective enzyme immobilization due to the excellent synergistic effects between the CeO2 nanoparticles and graphene sheet.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

References

  1. 1.

    Qureshia Anjum, Gurbuzb Yasar, Niazia Javed H (2012) Sensors Actuators B 171:62–76

  2. 2.

    Aronson D (2008) Hyperglycemia and the pathobiology of diabetic complications. In: Cardiovascular diabetology: clinical, metabolic and inflammatory facets; Fisman FX, Tenenbaum A, Eds; Karger: Basel, Swizerland, pp 1–16

  3. 3.

    Wild SR, Green A, Sicree R (2004) Diabetes Care 27:1047–1053

  4. 4.

    Eliane PC, María JAS, Manuela K, Vivian F (2014) J Mol Catal B Enzym 99:56–67

  5. 5.

    Teles FRR, Fonseca LP (2008) Mater Sci Eng C 28:1530–1543

  6. 6.

    Wu X, Sprinkle M, Li X, Ming F, Berger C, Heer WAD (2008) Phys Rev Lett 101:026801

  7. 7.

    Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Nano Lett 11:1423–1427

  8. 8.

    Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Mullen K (2010) Chem Sus Chem 3:236–239

  9. 9.

    Guo CX, Zhang LY, Miao J, Zhang J, Li CM (2013) Adv Energy Mater 3:167–171

  10. 10.

    Mani V, Periasamy AP, Chen SM (2012) Electrochem Commun 17:75–78

  11. 11.

    Mani V, Devadas B, Chen SM (2013) Biosens Bioelectron 41:309–315

  12. 12.

    Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–244

  13. 13.

    Matsumoto Y, Koinuma M, Kim SY, Watanabe Y, Taniguchi T, Hatakeyama K, Tateishi H, Ida S (2010) ACS Appl Mater Interfaces 2:3461–3466

  14. 14.

    Kamat PV (2010) J Phys Chem Lett 1:520–527

  15. 15.

    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G (2008) J Hone. Solid State Commun 146:351–355

  16. 16.

    Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T (2011) Nat Mater 10:780–786

  17. 17.

    Wu ZS, Ren WC, Wang DW, Li F, Liu BL, Cheng HM (2010) ACS Nano 10:5835–5842

  18. 18.

    Zhu Y, James DK, Tour JM (2012) Adv Mater 24:4924–4955

  19. 19.

    Cote LJ, Kim F, Huang JX (2009) Am Chem Soc J 131:1043–1049

  20. 20.

    Srivastava M, Das AK, Khanra P, Uddin MdE, Kima NH, Lee JH (2013) Mater Chem A J 1:9792–9801

  21. 21.

    De S, Mohanty S, Nayak SK (2014) J Mater Eng Perform 24(1):114–127

  22. 22.

    Du J, Lai XY, Yang NL, Zhai J, Kisailus D, Su FB, Wang D, Jiang L (2011) ACS Nano 5:590–596

  23. 23.

    De S, Mohanty S, Nayak SK (2015) Sens lett. doi:10.1166/s1.2015.3419

  24. 24.

    Wang ZL, Li GR, Ou YL, Feng ZP, Qu DL, Tong YX (2011) J Phys Chem C 115:351–356

  25. 25.

    Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993–997

  26. 26.

    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101

  27. 27.

    Qiu JD, Huang J, Liang RP (2011) Sens Actuators B 160:287–294

  28. 28.

    Erdem A, Muti M, Karadeniz H, Congur G, Canavar E (2012) Colloids Surf B 95:222–228

  29. 29.

    Jiang L, Yao M, Liu B, Li Q, Liu R, Lv H, Lu S, Gong C, Zou B, Cui T, Liu B (2012) J Phys Chem C 116:11741–11745

  30. 30.

    Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Anal Chem 81:2378–2382

  31. 31.

    Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) ACS Nano 2:1825–1832

  32. 32.

    Lin WJ, Liao CS, Jhang JH, Tsai YC (2009) Electrochem Commun 11:2153–2156

  33. 33.

    Wu JF, Xu MQ, Zhao GC (2010) Electrochem Commun 12:175–177

  34. 34.

    Wang Y, Li Y, Tang L, Lu J, Li J (2009) Electrochem Commun 11:889–892

  35. 35.

    Li MX, Zhu JE, Zhang LL, Chen X, Zhang HM, Zhang FZ, Xu SL, Evans DG (2011) Nanoscale. doi:10.1039/C1NR10592B

  36. 36.

    Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu X (2012) Anal Chim Acta 709:47–53

  37. 37.

    Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) Biosens Bioelectron 26:3500–3504

  38. 38.

    Liu Y, Wang M, Zhao F, Xu Z, Dong S (2005) Biosens Bioelectron 21:984–988

  39. 39.

    Du D, Liu J, Zhang XY, Cui XL, Lin YH (2011) J Mater Chem 21:8032–8037

  40. 40.

    Wang G, Bai JT, Wang YH, Ren ZY, Bai JB (2011) Scr Mater 65:339–342

  41. 41.

    Amouzadeh M, Varkani TJN (2014) Sens Actuators B 202:475–482

  42. 42.

    Hummers WS, Offeman RE (1958) Am Chem Soc J 80:1339

  43. 43.

    Wang Y (2011) Guo CX, Liu JH, Chen T, Yang HB, Li CM. Dalton Trans 40:6388–6391

  44. 44.

    Jha SK, Kumar CN, Raj RP, Jha NS, Mohan S (2014) Electrochim Acta 120:308–313

  45. 45.

    Suh JKF, Matthew HWT (2000) Biomaterials 21:2589–2598

  46. 46.

    Dunn GA, Zicha D (1995) J Cell Sci 108:1239–1249

  47. 47.

    Muzzarelli C, Muzzarelli RAA (2002) J Inorg Biochem 92:89–94

  48. 48.

    Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A (2002) J Mater Sci Mater Med 13:23–28

  49. 49.

    Hannah S, Samuel SI (2005) Biomaterials 26:5492–5499

  50. 50.

    Costa HS, Mansur AAP, Barbosa-Stancioli EF, Pereira MM, Mansur HS (2008) J Mater Sci 43:510–524

  51. 51.

    Zhang M, Yuan R, Chai Y, Wang C, Wu X (2013) Anal Biochem 436:69–74

  52. 52.

    Suni II (2008) Trends Anal Chem 27:604–611

  53. 53.

    Maduraiveeran G, Ramaraj R (2007) J Electroanal Chem 608:52–58

  54. 54.

    Liu X, Xie L, Li H (2012) J Electroanal Chem 682:158–163

  55. 55.

    Devadas Balamurugan, Cheemalapati Srikanth, Chen Shen-Ming, Rajkumar Muniyandi (2014) RSC Adv 4:45895–45902

  56. 56.

    Chettibi S, Wojcieszak R, Boudjennad EH, Belloni J, Bettahar MM, Keghouche N (2006) Catal Today 113:157–165

  57. 57.

    Matharu Z, Sumanam G, Arya SK, Singh SP, Gupta V, Malhotra BD (2007) Langmuir 23(26):13188–13192

  58. 58.

    Kang Xinhuang, Jun Wang Hong Wu, Aksay Ilhan A, Liu Jun, Lin Yuehe (2009) Biosens Bioelectron 25:901–905

  59. 59.

    Teymourian Hazhir, Salimi Abdollah, Firoozi Somayeh, Korani Aazam (2014) Saied Soltanian Electrochimica Acta. doi:10.1016/j.electacta.2014.08.007

  60. 60.

    Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) Biosens Bioelectron 23:135–139

  61. 61.

    Wei Sun, Gao R, Jiao K (2007) J Phys Chem B 111:4560–4567

  62. 62.

    Radoi A, Compagnone D, Devic E, Palleschi G (2007) Sens Actuators B 121:501–506

  63. 63.

    Saha S, Arya SK, Singh SP, Sreenivas K, Malhotra BD, Gupta Vinay (2009) Biosens Bioelectron 24:2040–2045

  64. 64.

    Solanki PR, Dhand C, Kaushik A, Ansari AA, Sood KN, Malhotra BD (2009) Sens Actuators B 141:551–556

  65. 65.

    Ya YL, Shiu KK (2008) Electroanalysis 20:1542–1548

  66. 66.

    Tang S, Wang XZ, Lei JP, Hu Z, Deng SY, Ju HX (2010) Biosens Bioelectron 26:432–436

  67. 67.

    Wang YL, Liu L, Li MG, Xu SD, Gao F (2011) Biosens Bioelectron 30:107–111

  68. 68.

    Palanisamy S, Karuppiah C, Chen S (2014) Colloids Surf B 114:164–169

  69. 69.

    Patil D, Dung NQ, Jung H, Ahn SY, Jang DM, Kim D (2012) Biosens Bioelectron 31:176–181

  70. 70.

    Yang L, Xiong H, Zhang X, Wang S (2011) Biosens Bioelectron 26:3801–3805

  71. 71.

    Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) Adv Funct Mater 18:591–599

  72. 72.

    Wu S, Ju H, Liu Y (2007) Adv Funct Mater 17:585–592

  73. 73.

    Cai Chang-Jun, Mao-Wen Xu, Bao Shu-Juan, Lei Chao, Jia Dian-Zeng (2012) RSC Adv 2:8172–8178

Download references

Acknowledgments

One of the author Miss Sriparna De thanks Mrs. Lakshmi Unnikrishnan and Mr. K. Prabakaran from LARPM, CIPET for the support of the electrochemical characterization. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Correspondence to Smita Mohanty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De, S., Mohanty, S. & Nayak, S.K. Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment. Bioprocess Biosyst Eng 38, 1671–1683 (2015). https://doi.org/10.1007/s00449-015-1408-5

Download citation

Keywords

  • Green material
  • Graphene
  • CeO2 nanoparticles
  • Nanohybrid
  • Enzyme immobilization
  • Biocompatibility