Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis


β-Galactosidase from Lactobacillus plantarum HF571129 was immobilized on zinc oxide nanoparticles (ZnO NPs) using adsorption and cross-linking technique. Immobilized β-galactosidase showed broad-spectrum pH optima at pH 5–7.5 and temperature 50–60 °C. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) showed that β-galactosidase successfully immobilized onto supports. Due to the limited diffusion of high molecular weight substrate, K m of immobilized enzyme slightly increased from 6.64 to 10.22 mM, while V max increased from 147.5 to 192.4 µmol min−1 mg−1 as compared to the soluble enzyme. The cross-linked adsorbed enzyme retained 90 % activity after 1-month storage, while the native enzyme showed only 74 % activity under similar incubation conditions. The cross-linked β-galactosidase showed activity until the seventh cycle and maintained 88.02 % activity even after the third cycle. The activation energy of thermal deactivation from immobilized biocatalyst was 24.33 kcal/mol with a half-life of 130.78 min at 35 °C. The rate of lactose hydrolysis for batch and packed bed was found to be 0.023 and 0.04 min−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16



Fourier transform infrared spectroscopy

ZnO NPs:

Zinc oxide nanoparticles


Generally recognized as safe


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis


Field-emission scanning electron microscopy



K d :

Deactivation rate constants

V max :

Maximum reaction velocity

K m :

Michaelis–Menten constants

ΔH :


ΔG :

Gibbs free energy

ΔS :



  1. 1.

    Richmond ML, Gray JI, Stine CM (1981) Beta-galactosidase: review research related to technological application, nutritional concerns, and immobilization. J Dairy Sci 64:1759–1771

  2. 2.

    Hubber RE, Gupta MN, Khare SK (1994) The active site and mechanism of the β-galactosidase from Escherichia coli. Int J Biochem 26:309–318

  3. 3.

    Hung MN, Xia Z, Hu NT, Lee BH (2001) Molecular and biochemical analysis of 2β-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263

  4. 4.

    Laxmi NP, Mutamed MA, Nagendra PS (2011) Effect of carbon and nitrogen sources on growth of Bifidobacterium animalis Bb12 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 and production of β-galactosidase under different culture conditions. Int Food Res J18:373–380

  5. 5.

    Neri DFM, Balcao VM, Carneiro MG, Carvalino LB, Teixeira JA (2008) Immobilization of β-galactosidase from Kluyveromyces lactis onto a poly siloxane-polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis. Catal Commun 9:2334–2339

  6. 6.

    Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

  7. 7.

    Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H, Wakagi T (2002) Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol 322:79–91

  8. 8.

    Nakkharat P, Haltrich D (2006) Purification and characterisation of an intracellular enzyme with β-glucosidase and β-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J Biotechnol 123:304–313

  9. 9.

    Wang H, Luo H, Bai Y, Wang Y, Yang P, Shi P, Zhang W, Fan Y, Yao B (2009) An acidophilic β-galactosidase from Bispora sp. MEY-1 with high lactose hydrolytic activity under simulated gastric conditions. J Agric Food Chem 57:5535–5541

  10. 10.

    Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostruct Mater 10:465–477

  11. 11.

    SinghalM Chhabra V, Kang P, Shah DO (1997) Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot micro emulsion. Mater Res Bull 32:239–247

  12. 12.

    Wang RH, Xin JH, Tao XM, Daoud WA (2004) ZnO nanorods grown on cotton fabrics at low temperature. Chem Phys Lett 398:250–255

  13. 13.

    Wang RH, Xin JH, Tao XM (2005) UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg Chem 44:3926–3930

  14. 14.

    Yadav A, Virendra P, Kathe AA, Sheela R, Deepti Y, Sundaramoorthy C (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645

  15. 15.

    Li M, Bala H, Lv X, Ma X, Sun F, Tang L, Wang Z (2007) Direct synthesis of mono dispersed ZnO nanoparticles in an aqueous solution. Mater Lett 61:690–693

  16. 16.

    Ansari SA, Husain Q (2011) Immobilization of Kluyveromyces lactis β galactosidase on concanavalin A layered aluminium oxide nanoparticles—its future aspects in biosensor applications. J Mol Catal B Enzym 70:119–126

  17. 17.

    Cipolatti EP, Silva MJA, Kleina M, Feddern V, Feltes MMC, Oliveria JV, Ninow JL, de Oliveria D (2014) Current status and trends in enzymatic nano immobilization. J Mol Catal B Enzym 99:56–67

  18. 18.

    Lilly M, Dunnill P (1976) Immobilized-enzymes reactors. Method Enzymol 44:717–738

  19. 19.

    Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182

  20. 20.

    Selvarajan E, Mohanasrinivasan V (2015) Kinetic studies on exploring lactose hydrolysis potential of β-galactosidase extracted from Lactobacillus plantarum HF571129. J Food Sci Technol. doi:10.1007/s13197-015-1729-z

  21. 21.

    Matto M, Husain Q (2006) Entrapment of porous and stable concanavalin A–peroxidase complex into hybrid calcium alginate–pectin gel. J Chem Technol Biotechnol 81:1316–1323

  22. 22.

    Dwevedi A, Singh AK, Singh DP, Srivastava ON, Kayastha AM (2009) Lactose nano-probe optimized using response surface methodology. Biosens Bioelectron 25:784–790

  23. 23.

    Funduenanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Physicochemical characterization of Ca-alginate microparticles produced by different methods. Biomaterials 20:1427–1435

  24. 24.

    Velten F, Laue C, Schrezenmeir J (1999) The effect of alginate and hyaluronate on the viability and function of immune isolated neonatal rat islets. Biomaterials 20:2161–2167

  25. 25.

    Prashanth SJ, Mulimani VH (2005) Soymilk oligosaccharide hydrolysis by Aspergillus oryzae α-galactosidase immobilized in calcium alginate. Process Biochem 40:1199–1205

  26. 26.

    Hussain Q, Shakeel AA, Fahad A, Ameer A (2011) Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol 49:37–43

  27. 27.

    Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo GDC, Fernández-Lafuente R, Guisán JM (2006) Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol 39:877–882

  28. 28.

    Alonso-Sande M, Cuña M, Remuñán-López C, Teijeiro-Osorio D, Alonso-Lebrero JL, Alonso MJ (2006) Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules 39:4152–4158

  29. 29.

    Ansari SA, Husain Q (2010) Lactose hydrolysis by β galactosidase immobilized on concanavalin A-cellulose in batch and continuous mode. J Mol Catal B Enzym 63:68–74

  30. 30.

    Ansari SA, Husain Q (2011) Bioaffinity based immobilization of almond (Amygdaluscommunis) β-galactosidase on Con A–layered calcium alginate-cellulose beads: its application in lactose hydrolysis in batch and continuous mode. Iranian J Biotech 9:290–301

  31. 31.

    Ansari SA, Husain Q, Qayyum S, Azam A (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49:2107–2115

  32. 32.

    Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β-galactosidase. Food Bioprod Process 90:351–359

  33. 33.

    Haider T, Husain Q (2008) Concanavalin A layered calcium alginate–starch beads immobilized β-galactosidase as a therapeutic agent for lactose intolerant patients. Int J Pharm 359:1–6

  34. 34.

    Pathmamanoharan C, Wijkens P, Grove DM, Philipse AP (1996) paramagnetic silica particles: synthesis and grafting of a silane coupling agent containing nickel ions onto colloidal silica particles. Langmuir 12:4372–4377

  35. 35.

    Kwon YJ, Kim KH, Lim CS, Shim KB (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organo chemical route. J Ceram Process Res 3:146–149

  36. 36.

    Singh SC, Gopal R (2008) Synthesis of colloidal zinc oxide nanoparticles by pulsed laser ablation in aqueous media. Physica 40:724–738

  37. 37.

    Ansari SA, Satar R, Alam F, Alqahtani MH, Chaudhary AG, Naseer MI, Karim S, Sheikh IA (2012) Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae β-galactosidase and its application in lactose hydrolysis. Process Biochem 47:2427–2433

  38. 38.

    Roy I, Gupta MN (2003) Lactose hydrolysis by Lactozym immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332

  39. 39.

    Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

  40. 40.

    Elnashar MMM, Yassin MA (2009) Covalent immobilization of β-galactosidase on carrageenan coated with chitosan. J Appl Polym Sci 114:17–24

  41. 41.

    El-Masry MM, Maio AD, Martelli PL, Casadio R, Moustafa AB, Rossi S, Mita DG (2001) Influence of the immobilization process on the activity of β-galactosidase bound to nylon membranes grafted with glycidyl methacrylate: part 1. Isothermal behaviour. J Mol Catal B Enzym 16:175–189

  42. 42.

    Sanjay G, Sugunan S (2006) Enhanced pH and thermal stabilities of invertase immobilized on montmorillonite K-10. Food Chem 94:573–579

  43. 43.

    Xu FJ, Cai QJ, Li YL, Kang ET, Neoh KG (2005) Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)—Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules 6:1012–1020

  44. 44.

    Dinnella C, Montele E, Farenga MF, Hourigan JA (2004) The use of enzymes for thermal process monitoring: modification of milk alkaline phosphatase heat resistance by means of an immobilization technique. Food Control 15:427–433

  45. 45.

    Haider T, Husain Q (2007) Preparation of lactose free milk by using salt fractionated almond (Amygadalus communis) β-galactosidase. J Sci Food Agric 87:1278–1283

  46. 46.

    Zarate G, Chaia AP, Gonzalez S, Oliver G (2000) Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 9:1167–1294

  47. 47.

    Torchilin VP, Golmacher VS, Smirov VN (1978) Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochem Biophys Res Commun 85:983–990

  48. 48.

    Kishore D, Kayastha AM (2012) A β-galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications. Food Chem 134:1113–1122

  49. 49.

    Swarnalatha V, Esther RA, Dhamodharan R (2013) Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 96:6–13

  50. 50.

    Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS 17:1–12

  51. 51.

    Haider T, Husain Q (2009) Immobilization of β-galactosidase by bio affinity adsorption on concanavalin A layered calcium alginate–starch hybrid beads for the hydrolysis of lactose from whey/milk. Int Dairy J 19:172–177

  52. 52.

    Freitas F, Ribeiro G, Brandao G, Cardoso V (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58–59:33–38

  53. 53.

    Lima AF, Cavalcante KF, Freitas MFM, Rodrigues THS, Rocha MVP, Goncalves LRB (2013) Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochem 48:443–452

  54. 54.

    Ustok FI, Tari C, Harsa S (2010) Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem 119:1114–1120

  55. 55.

    Zanin GM, Moraes FF (2004) Enzimascomo Agentes Biotecnológicos, 4, Ed. Legis Summa, cap, Ribeirão Preto, pp 35–85

  56. 56.

    Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43:142–147

  57. 57.

    Mariotti MP, Yamanaka H, Araujo AR, Trevisan HC (2008) Hydrolysis of whey lactose by immobilized β-galactosidase. Braz Arch Biol Technol 51:1233–1240

  58. 58.

    Klein MP, Fallavena LP, Schöffer JN, Ayub MAZ, Rodrigues RC, NinowJL Hertz PF (2013) High stability of immobilized β-d-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr Polym 95:465–470

  59. 59.

    Fischer J, Guidini CZ, Santana LNS, de Resende MM, Cardoso VL, Ribeiro EJ (2013) Optimization and modelling of lactose hydrolysis in a packed bed system using immobilized β-galactosidase from Aspergillus oryzae. J Mol Catal B Enzym 85:178–186

  60. 60.

    Mammarella EJ, Rubiolo AC (2006) Predicting the PBR performance with immobilized microbial lactase. Proc Biochem 41:1627–1636

Download references


We are greatly indebted to the VIT University for the constant encouragement, help and support for extending the necessary facilities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Correspondence to V. Mohanasrinivasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 574 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selvarajan, E., Mohanasrinivasan, V., Subathra Devi, C. et al. Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Bioprocess Biosyst Eng 38, 1655–1669 (2015).

Download citation


  • β-Galactosidase
  • Zinc oxide nanoparticles
  • Lactose hydrolysis
  • Glutaraldehyde
  • FTIR