Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day–night irradiation: experiments and simulation

  • 650 Accesses

  • 15 Citations

Abstract

In this work, the production of Scenedesmus obliquus in a continuous flat-plate laboratory-scale photobioreactor (PBR) under alternated day–night cycles was tested both experimentally and theoretically. Variation of light intensity according to the four seasons of the year were simulated experimentally by a tunable LED lamp, and effects on microalgal growth and productivity were measured to evaluate the conversion efficiency of light energy into biomass during the different seasons. These results were used to validate a mathematical model for algae growth that can be applied to simulate a large-scale production unit, carried out in a flat-plate PBR of similar geometry. The cellular concentration in the PBR was calculated in both steady-state and transient conditions, and the value of the maintenance kinetic term was correlated to experimental profiles. The relevance of this parameter was finally outlined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

  2. 2.

    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. doi:10.1016/j.rser.2009.07.020

  3. 3.

    Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467. doi:10.1016/j.apenergy.2012.10.004

  4. 4.

    Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610. doi:10.1016/j.rser.2010.06.014

  5. 5.

    Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16:4316–4342. doi:10.1016/j.rser.2012.03.047

  6. 6.

    Slegers PM, Wijffels RH, Van Straten G, Van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Appl Energy 88:3342–3353. doi:10.1016/j.apenergy.2010.12.037

  7. 7.

    Ghasemi Y, Rasoul-Amini S, Naseri AT et al (2012) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48:126–144. doi:10.1134/S0003683812020068

  8. 8.

    González-López CV, Acién Fernández FG, Fernández-Sevilla JM et al (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650. doi:10.1002/bit.24446

  9. 9.

    Gutierrez-Wing MT, Benson BC, Rusch KA (2012) Impact of light quality and quantity on growth rate kinetics of Selenastrum capricornutum. Eng Life Sci 12:79–88. doi:10.1002/elsc.201000217

  10. 10.

    Tang H, Chen M, Ng KYS, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109:2468–2474. doi:10.1002/bit.24516

  11. 11.

    Zijffers J-WF, Schippers KJ, Zheng K et al (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol 12:708–718. doi:10.1007/s10126-010-9258-2

  12. 12.

    Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210. doi:10.1002/bit.10468

  13. 13.

    Quinn JC, Turner CW, Bradley TH (2012) Scale-up of flat plate photobioreactors considering diffuse and direct light characteristics. Biotechnol Bioeng 109:363–370. doi:10.1002/bit.23324

  14. 14.

    Gebremariam AK, Zarmi Y (2012) Synchronization of fluid-dynamics related and physiological time scales and algal biomass production in thin flat-plate bioreactors. J Appl Phys 111:034904. doi:10.1063/1.3678009

  15. 15.

    Huang Q, Yao L, Liu T, Yang J (2012) Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 84:718–726. doi:10.1016/j.ces.2012.09.017

  16. 16.

    Li X, Yang N (2013) Modeling the light distribution in airlift photobioreactors under simultaneous external and internal illumination using the two-flux model. Chem Eng Sci 88:16–22. doi:10.1016/j.ces.2012.11.015

  17. 17.

    Belarbi E, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Technol 26:516–529

  18. 18.

    Hindersin S, Leupold M, Kerner M, Hanelt D (2013) Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Bioprocess Biosyst Eng 36:345–355. doi:10.1007/s00449-012-0790-5

  19. 19.

    El-Sheekh M, Abomohra AE-F, Hanelt D (2013) Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol 29:915–922. doi:10.1007/s11274-012-1248-2

  20. 20.

    Sforza E, Enzo M, Bertucco A (2013) Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach. Chem Eng Res Des. doi:10.1016/j.cherd.2013.08.017

  21. 21.

    Pruvost J, Van Vooren G, Le Gouic B et al (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158. doi:10.1016/j.biortech.2010.06.153

  22. 22.

    Cornet J, Dussap C, Gros J (1995) A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem Eng Sci 50:1489–1500

  23. 23.

    Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2013) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0679-z

Download references

Author information

Correspondence to Eleonora Sforza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bertucco, A., Beraldi, M. & Sforza, E. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day–night irradiation: experiments and simulation. Bioprocess Biosyst Eng 37, 1535–1542 (2014). https://doi.org/10.1007/s00449-014-1125-5

Download citation

Keywords

  • Seasonal irradiation
  • Day–night cycles
  • Continuous photobioreactor
  • Growth model