Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Batch and fed-batch growth of Pichia pastoris under increased air pressure


Pichia pastoris CBS 2612 behavior under air pressures of 1, 3 and 5 bar in culture media of glycerol (pure and crude) and methanol was studied. Generally, the increase in oxygen transfer rate due to the increase of total pressure improved cellular growth for all carbon sources and for batch and fed-batch processes with different feeding rate strategies. In batch cultures, 1.4-, 1.2-, and 1.5-fold improvement in biomass production was obtained with the increase of air pressure up to 5 bar, using methanol, pure glycerol, and crude glycerol, respectively. The increase of air pressure to 5 bar using exponential feeding rate led to 1.4-fold improvement in biomass yield per glycerol mass consumed, for crude and pure glycerol. The current low cost of crude glycerol from the biodiesel production together with the present results shows the possibility of improving cell mass production of P. pastoris using increased air pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


C :

Dissolved oxygen concentration in the liquid (mg O2/L)

C* :

Solubility of oxygen in the liquid (mg O2/L)


Cell dry weight

D :

Dilution rate (h−1)


Dissolved oxygen tension (%)

F :

Feed rate (mL/min)

\( H_{{{\text{O}}_{2} }} \) :

Henry constant for oxygen

k L a :

Volumetric oxygen mass transfer coefficient (h−1 or s−1)


Nicotinamide adenine dinucleotide


Oxygen transfer rate (mg O2/L h)

qO2 :

Specific oxygen uptake rate (mg O2/g h)

q s :

Maximum specific substrate consumption rate (g/g h)

\( p_{{{\text{O}}_{ 2} }} \) :

Oxygen partial pressure (bar)

P :

Absolute pressure (bar)

\( P_{\text{T}} \) :

Total air pressure (bar)

t :

Time (h)

V 0 :

Initial culture volume (mL)

\( y_{{{\text{O}}_{ 2} }} \) :

Oxygen molar fraction in the gas

Y x/O :

Cell mass yield per oxygen mass consumed (g/g)

Y x/s :

Cell mass yield per carbon source mass consumed (g/g)

μ :

Specific growth rate (h−1)

υ :

Superficial gas velocity (m/s)










Initial value


  1. 1.

    Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

  2. 2.

    Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17

  3. 3.

    Çelik E, Ozbay N, Oktar N, Çalik P (2008) Use of biodiesel byproduct crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind Eng Chem Res 47:2985–2990

  4. 4.

    Knoll A, Maier B, Tscherrig H, Buchs J (2005) The oxygen mass transfer, carbon dioxide inhibition, heat removal, and the energy and cost efficiencies of high pressure fermentation. Adv Biochem Eng Biotechnol 92:77–99

  5. 5.

    Lopes M, Gomes N, Mota M, Belo I (2009) Yarrowia lipolytica growth under increased air pressure: influence on enzymes production. Appl Biochem Biotechnol 159(1):46–53

  6. 6.

    Pinheiro R, Belo I, Mota M (2003) Growth and β-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Lett Appl Microbiol 37:438–442

  7. 7.

    Coelho MAZ, Belo I, Pinheiro R, Amaral AL, Mota M, Coutinho JAP, Ferreira EC (2004) Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl Microbiol Biotechnol 66(3):318–324

  8. 8.

    Onken U, Liefke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv Biochem Eng Biotechnol 40:137–169

  9. 9.

    Pinheiro R, Belo I, Mota M (2000) Air pressure effects on biomass yield of two different Kluyveromyces strains. Enzyme Microb Tech 26:756–762

  10. 10.

    Charoenrat T, Ketudat-Cairns M, Jahic M, Veide A, Enfors SO (2006) Increased total air pressure versus oxygen limitation for enhanced oxygen transfer and product formation in a Pichia pastoris recombinant protein process. Biochem Eng J 30:205–211

  11. 11.

    Maier B, Dietrich C, Büchs J (2001) Correct application of the sulphite oxidation methodology for measuring the volumetric mass transfer coefficient k L a under non-pressurized and pressurized conditions. Trans IChemE 79:107–113

  12. 12.

    Lopes M, Gomes N, Gonçalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46:255–260

  13. 13.

    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principles of protein–dye binding. Anal Biochem 72:248–255

  14. 14.

    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

  15. 15.

    Chen H, Chu J, Zhang S, Zhuang Y, Qian J, Wang Y, Hu X (2007) Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 74:1205–1212

  16. 16.

    Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiol 153:281–290

  17. 17.

    Belo I, Pinheiro R, Mota M (2000) Response of the thermophile Thermus sp. RQ-1 to hyperbaric air in batch and fed-batch cultivation. Appl Microbiol Biotechnol 53:517–524

  18. 18.

    Knabben I, Regestein L, Marquering F, Steinbusch S, Lara AR, Büchs J (2010) High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. J Biotechnol 150:73–79

  19. 19.

    Gao Zh, Rg Ackman (1995) Determination of vitamin-K1 in canola oils by high-performance liquid-chromatography with menaquinone-4 as an internal standard. Food Res Int 28:61–69

  20. 20.

    Heinonen M, Valsta L, Anttolainen M, Ovaskainen ML, Nen LH, Mutanen M (1997) Comparison between analyzed and calculated food composition data: carotenoids, retinoids, tocopherols, tocotrienols, fat, fatty acids, and sterols. J Food Compos Anal 10:3–13

  21. 21.

    Cindric IJ, Zeiner M, Steffan I (2007) Trace elemental characterization of edible oils by ICP-AES and GFAAS. Microchem J 85:136–139

  22. 22.

    Walker GM (1998) Yeast, biotechnology and physiology. Wiley, Chichester

  23. 23.

    Chen YH, Cai RX, Zhang K (2007) Study the effect of vitamin K on intracellular NAD level in yeast by fluorescence spectrum. Spectrochim Acta 67(A):235–239

  24. 24.

    Wriessnegger T, Gübitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, Daum G (2007) Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochim Biophys Acta 1771:455–461

  25. 25.

    Koleva D, Petrova V, Hristozova Tz, Kujumdzieva A (2008) Study of catalase enzyme in methylotrophic yeasts. Biotechnol Biotech Equip 22(2):762–768

  26. 26.

    Guo M-J, Zhuang Y-P, Chu J, Zhang S-L, Xiong A-S, Peng R-H, Yao Q-H (2007) Production and purification of a novel thermostable phytase by Pichia pastoris FPHY34. Process Biochem 42:1660–1665

  27. 27.

    Chiruvolu V, Eskridge K, Cregg J, Meagher M (1999) Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris yeast. Appl Biochem Biotechnol 75:163–173

  28. 28.

    Jahic M, Rotticci-Mulder JC, Martinelle M, Hul K, Enfors SO (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24:385–393

  29. 29.

    Xu B, Jahic M, Enfors SO (1999) Modelling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotech Prog 15:81–90

  30. 30.

    Belo I, Pinheiro R, Mota M (1998) Batch and fed-batch cultures of E. coli TB1 at different oxygen transfer rates. Bioprocess Eng 18:451–455

  31. 31.

    Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

Download references


The authors acknowledge the financial support provided by “Fundação para a Ciência e Tecnologia” (Grant SFRH/BD/47371/2008).

Author information

Correspondence to Isabel Belo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lopes, M., Belo, I. & Mota, M. Batch and fed-batch growth of Pichia pastoris under increased air pressure. Bioprocess Biosyst Eng 36, 1267–1275 (2013).

Download citation


  • Pichia pastoris
  • Increased air pressure
  • Oxygen transfer rate (OTR)
  • Crude glycerol