Advertisement

Bioprocess and Biosystems Engineering

, Volume 35, Issue 1–2, pp 129–133 | Cite as

Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid

  • Won-Kyung Hong
  • Chul Ho Kim
  • Dina Rairakhwada
  • Seonghun Kim
  • Byung-Ki Hur
  • Akihiko Kondo
  • Jeong-Woo SeoEmail author
Original Paper

Abstract

We examined the growth of a novel oleaginous microalga, Aurantiochytrium sp. KRS101, using cellulosic materials as nutrients, and the resultant production of lipids containing high levels of docosahexaenoic acid (DHA). The microalgal strain could grow using either carboxymethylcellulose or cellobiose as a carbon source, and produced lipids containing high levels of DHA (49–58% of total fatty acids). In line with this growth behavior, carboxymethylcellulase and cellobiohydrolase activities were evident in both cell-free lysates and culture broths. Additionally, an industrial cellulosic biomass, palm oil empty fruit bunches (POEFB), a by-product of the palm oil industry, were utilized by the microalgal strain for cell growth and lipid production.

Keywords

Aurantiochytrium Microalga Cellulose Empty fruit bunch Lipid 

Notes

Acknowledgments

This study was supported by the Ministry of Food, Agriculture, Forestry, and Fisheries and by the Advanced Biomass R&D Center (2010-0029737) of Korea Grant funded by the Ministry of Education, Science and Technology, of the Republic Korea.

References

  1. 1.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387CrossRefGoogle Scholar
  2. 2.
    Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresource Tech 101:1385–1388CrossRefGoogle Scholar
  3. 3.
    Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Tech 99:7881–7885CrossRefGoogle Scholar
  4. 4.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756CrossRefGoogle Scholar
  5. 5.
    Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresource Tech 100:356–361CrossRefGoogle Scholar
  6. 6.
    Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Tech 100:4843–4847CrossRefGoogle Scholar
  7. 7.
    Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enz Microbiol Tech 41:312–317CrossRefGoogle Scholar
  8. 8.
    Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  9. 9.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  10. 10.
    Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76CrossRefGoogle Scholar
  11. 11.
    Seraphim P, Michael K, George A (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Tech 95:287–291CrossRefGoogle Scholar
  12. 12.
    Brooks SL, Mitchell A, Steffenson N (2000) Mothers, infants, and DHA. Implications for nursing practice. Am J Matern Child Nurs 25:71–75CrossRefGoogle Scholar
  13. 13.
    Carlson SE (2009) Early determinants of development: a lipid perspective. Am J Clin Nutr 89:678S–684SCrossRefGoogle Scholar
  14. 14.
    Auestad N, Halter R, Hall RT, Blatter M, Bogle ML, Burks W, Erickson JR, Fitzgerald KM, Dobson V, Innis SM, Singer LT, Montalto MB, Jacobs JR, Qiu W, Bornstein MH (2001) Growth and development in term infants fed long-chain polyunsaturated fatty acids: a double-masked, randomized, parallel, prospective, multivariate study. Pediatrics 108:372–381CrossRefGoogle Scholar
  15. 15.
    Chi Z, Hu B, Liu Y, Frear C, Wen Z, Chen S (2007) Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl Biochem Biotechnol 137–140:805–815CrossRefGoogle Scholar
  16. 16.
    Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn J (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Tech 101:3623–3627CrossRefGoogle Scholar
  17. 17.
    Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Ki CH, Seo JW (2011) Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol 164:1468–1480CrossRefGoogle Scholar
  18. 18.
    Hargraves PE (2008) Allelopathy at the land/sea interface: microalgae and Brazilian pepper. Mar Environ Res 66:553–555CrossRefGoogle Scholar
  19. 19.
    Gocke K, Cortés J, Murillo MM (2001) Planktonic primary production in a tidally influenced mangrove forest on the pacific coast of Costa Rica. Rev Biol Trop 49:279–288Google Scholar
  20. 20.
    Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106:231–236CrossRefGoogle Scholar
  21. 21.
    Millier GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  22. 22.
    Kongruang S, Han MJ, Breton CI, Penner MH (2004) Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotechnol 113–116:213–231CrossRefGoogle Scholar
  23. 23.
    Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Li H, Zhou H, Chen G, Liu W (2010) Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii. Bioresour Technol 101:6432–6437CrossRefGoogle Scholar
  25. 25.
    Jun HS, Qi M, Gong J, Egbosimba EE, Forsberg CW (2007) Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J Bacteriol 189:6806–6815CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Won-Kyung Hong
    • 1
  • Chul Ho Kim
    • 1
  • Dina Rairakhwada
    • 1
  • Seonghun Kim
    • 1
  • Byung-Ki Hur
    • 2
  • Akihiko Kondo
    • 3
  • Jeong-Woo Seo
    • 1
    Email author
  1. 1.Microbe-based Fusion Technology Research Center, Jeonbuk Branch InstituteKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupSouth Korea
  2. 2.Department of Biological EngineeringInha UniversityIncheonSouth Korea
  3. 3.Department of Chemical Science and Engineering, Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations