Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biosorption of Ni (II) by Schizosaccharomyces pombe: kinetic and thermodynamic studies


The potential of the dried yeast, wild-type Schizosaccharomyces pombe, to remove Ni(II) ion was investigated in batch mode under varying experimental conditions including pH, temperature, initial metal ion concentration and biosorbent dose. Optimum pH for biosorption was determined as 5.0. The highest equilibrium uptake of Ni(II) on S. pombe, q e, was obtained at 25 °C as 33.8 mg g−1. It decreased with increasing temperature within a range of 25–50 °C denoting an exothermic behaviour. Increasing initial Ni(II) concentration up to 400 mg L−1 also elevated equilibrium uptake. No more adsorption took place beyond 400 mg L−1. Equilibrium data fitted better to Langmuir model rather than Freundlich model. Sips, Redlich–Peterson, and Kahn isotherm equations modelled the investigated system with a performance not better than Langmuir. Kinetic model evaluations showed that Ni(II) biosorption process followed the pseudo-second order rate model while rate constants decreased with increasing temperature. Gibbs free energy changes (ΔG°) of the system at 25, 30, 35 and 50 °C were found as −1.47E + 4, −1.49E + 4, −1.51E + 4, and −1.58E + 4 J mol−1, respectively. Enthalpy change (ΔH°) was determined as −2.57E + 3 J mol−1 which also supports the observed exothermic behaviour of the biosorption process. Entropy change (ΔS°) had a positive value (40.75 J mol−1 K−1) indicating an increase in randomness during biosorption process. Consequently, S. pombe was found to be a potential low-cost agent for Ni(II) in slightly acidic aqueous medium. In parallel, it has been assumed to act as a separating agent for Ni(II) recovery from its aqueous solution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


C i :

Initial Ni(II) concentration (mg L−1)

C e :

Residual Ni(II) concentration at equilibrium (mg L−1)

q e :

Ni(II) uptake at equilibrium (mg g−1)

q 0 :

The maximum metal uptake (mg g−1)

K L :

Langmuir isotherm equilibrium constant (L mg−1)

K F :

Freundlich isotherm constant (mg g−1) (mg L−1)−1/n

n F :

Freundlich isotherm exponent

K S :

Sips isotherm constant (mg g−1) (mg L−1)−β

a S :

Sips isotherm constant (L mg−1)β

β S :

Sips isotherm exponent

K RP :

Redlich–Peterson isotherm constant (L g−1)

α RP :

Redlich–Peterson isotherm constant

β RP :

Redlich–Peterson isotherm exponent

Q max :

Kahn isotherm constant representing max. adsorption capacity (mg g−1)

b K :

Kahn isotherm constant

n K :

Kahn isotherm exponent

k p1 :

Pseudo-first order rate constant (min−1)

k p2 :

Pseudo-second order rate constant (g mg−1min−1)

E a :

Activation energy (kJ mol−1)

A 0 :

Frequency factor

R :

Universal gas constant (8.314 J mol−1 K−1)


The Gibbs free energy of biosorption (J mol−1)


Enthalpy change of biosorption (J mol−1)


Entropy change of biosorption (J mol−1 K−1)

R 2 :

Correlation coefficient


Root mean square error


  1. 1.

    Brierley JA, Brierley CI (2001) Present and future commercial applications of biohydrometallurgy. Hydrometall 59:233–239

  2. 2.

    Romera E, Gonzalez F, Ballester A, Blazquez MI, Munoz JA (2008) Biosorption of heavy metals by Fucus spiralis. Bioresour Technol 99:4684–4693

  3. 3.

    Mehta KD, Das Chitrangada, Pandey BD (2010) Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometall 105:89–95

  4. 4.

    Ubaldini S, Luptakova A, Macingova E, Massidda R, Fornari P (2010) Application of biohydrometallurgical processes for heavy metals removal from acid mine drainage. Nova Biotechnologica 10:15–21

  5. 5.

    Petersen J (2010) Modelling of bioleach processes: connections between science and engineering. Hydrometall 104:404–409

  6. 6.

    Brierley CI (2010) Biohydrometallurgical prospects. Hydrometall 104:324–328

  7. 7.

    Mc Donald RG, Whittington BI (2008) Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometall 91:56–69

  8. 8.

    Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometall 44:301–316

  9. 9.

    Castro IM, Fietto JLR, Vieira RX, Tropia MJM, Campos LMM, Paniago EB, Brandao RL (2000) Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometall 57:39–49

  10. 10.

    Vijayaraghavan K, Yeoung-Sang Y (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

  11. 11.

    Wang J, Chen C (2009) Biosorbents for heavy metal removal and their future. Biotechnol Adv 27:195–226

  12. 12.

    Bag A, Turker AR, Lale M (1999) Determination of trace metals in geological samples by atomic absorption spectrophotometry after preconcentration by Aspergillus niger immobilized on sepiolite. Anal Sci 15:1251–1256

  13. 13.

    Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals on Aspergillus niger. Bioresour Technol 70:95–104

  14. 14.

    Filipovic-Kovacevic Z, Sipos L, Briski F (2000) Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38:211–216

  15. 15.

    Bhattacharya S, Pal TK, Basumajumdar A, Banik AK (2002) Biosorption of heavy metals by Rhizopus arrhizus and Aspergillus niger. J Indian Chem Soc 79:747–750

  16. 16.

    Dilek FB, Erbay A, Yetis U (2002) Ni(II) biosoption by Polyporous versicolor. Process Biochem 37:723–726

  17. 17.

    Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:381–388

  18. 18.

    Rajendran P, Ashokkumar B, Muthukrishnan J, Gunasekaran P (2002) Toxicity assessment of nickel using Aspergillus niger and its removal from an industrial effluent. Appl Biochem Biotechnol 102:201–206

  19. 19.

    Tan TW, Hu B, Su HJ (2004) Adsorption of Ni+2 on amine- modified mycelium of Penicillium chrysogenum. Enzyme Microb Technol 35:508–511

  20. 20.

    Deng SB, Ting YP (2005) Characterisation og PEI-modified biomass and biosorption of Cu(II), Pb(II), and Ni(II). Water Res 39:2167–2177

  21. 21.

    Su HJ, Zhao Y, Li J, Tan TW (2006) Biosorption of Ni+2 by the surface molecular imprinting adsorbent. Process Biochem 41:1422–1426

  22. 22.

    Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(IV) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229

  23. 23.

    Topal-Sarikaya A, Akman G, Temizkan G (2006) Nickel resistance in fission yeast associated with the magnesium transport system. Mol Biotechnol 32:139–145

  24. 24.

    Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

  25. 25.

    Padmavathy V (2008) Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour Technol 99:3100–3109

  26. 26.

    Yin H, He B, Peng H, Ye J, Yang F, Zhang N (2008) Removal of Cr(IV) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism. J Hazard Mater 158:568–576

  27. 27.

    Eitinger T, Degen O, Bönke U, Müler M (2000) Nic1p, a relative of bacterial transition metal permeases in Scizosaccharomyces pombe, provides nickel ion for urease biosynthesis. J Biol Chem 275:18029–18033

  28. 28.

    Zhao Y, Lieberman HB (1995) Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 14:359–371

  29. 29.

    Fantes PA (1977) Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci 24:51–67

  30. 30.

    Tanaka N, Konomi M, Osumi M, Takegava K (2001) Characterization of a Schizosaccharomyces pombe mutant deficient in UDP-galactose transport activity. Yeast 18:903–914

  31. 31.

    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1368

  32. 32.

    Freundlich H (1907) Uber die adsorption in losungen. J Phys Chem 57:385–470

  33. 33.

    Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

  34. 34.

    Redlich OJ, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

  35. 35.

    Khan AR, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci 194:154–165

  36. 36.

    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svensla Vetenskapsakademien. Handlingar 24:1–39

  37. 37.

    Liu Y, Liu Y-J (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242

  38. 38.

    Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

  39. 39.

    Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Methods 29(2):189–232

  40. 40.

    Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

  41. 41.

    Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomass (Rhiozopus arrhizus, Mucor miehei and Penicillium chrysogenun): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

  42. 42.

    Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

  43. 43.

    Gadd GM, White C, DeRome L (1988) In: Norri PR, Kelly DP (eds) Heavy metal and radionuclide uptake by fungi and yeasts. Biohydrometallurgy. Chippenham, Wilts

  44. 44.

    Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Litopoulou Tzannetaki E, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865

  45. 45.

    Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

  46. 46.

    Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel (II) onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

  47. 47.

    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

  48. 48.

    Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

  49. 49.

    Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

  50. 50.

    Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347–1361

  51. 51.

    Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

Download references


This work was financially supported by the Marmara University Scientific Research Committee (Project no: FEN-A-030108-0015).

Author information

Correspondence to Ahmet Alp Sayar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Durmaz-Sam, S., Sayar, N.A., Topal-Sarikaya, A. et al. Biosorption of Ni (II) by Schizosaccharomyces pombe: kinetic and thermodynamic studies. Bioprocess Biosyst Eng 34, 997–1005 (2011).

Download citation


  • Biosorption
  • Schizosaccharomyces pombe
  • Adsorption isotherms
  • Process kinetics and thermodynamics