Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microbial population response to changes of the operating conditions in a dynamic nutrient-removal sequencing batch reactor

  • 185 Accesses

  • 22 Citations

Abstract

A nutrient-removal sequencing batch reactor operated with short anaerobic/aerobic cycles was subjected to different operating conditions, namely, cycle length, feeding pattern and feed composition. The changes in microbial population, as well as the contribution of microbial groups to the total nutrient removal, were estimated using the kinetic parameters obtained in this study. Denitrifying polyphosphate-accumulating organisms (DPAOs) were detected in the system, representing a fraction of 23% of phosphorus-accumulating organisms (PAOs). The results suggest that DPAOs and non-DPAOs are different microorganisms. The presence of nitrate in the feed stimulated DPAOs to predominate over non-DPAOs. Feeding the reactor with a mixture of organic substrates also stimulated DPAOs. Glycogen-accumulating organisms (GAOs) were likely to be present in the system and their development over PAOs was apparently favoured by increasing the aeration time and feeding during the aerobic phase. In contrast, the presence of propanoate in the feed apparently favoured PAOs over GAOs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    van Niel E, Appeldoorn KJ, Zehnder AJB, Kortstee GJJ (1998) Appl Environ Microbiol 64(8):2925–2930

  2. 2.

    Szpyrkowicz L, Zilio-Grandi F (1995) Water Res 29(10):2318–2326. DOI 10.1016/0043-1354(95)00051-L

  3. 3.

    Saito T, Brdjanovic D, van Loosdrecht MCM (2004) Water Res 38(17):3760–3768. DOI 10.1016/j.watres.2004.05.023

  4. 4.

    Kuba T, van Loosdrecht MCM, Brandse FA, Heijnen JJ (1997) Water Res 31(4):777–786. DOI 10.1016/S0043-1354(96)00370-3

  5. 5.

    Bortone G, Libelli SM, Tilche A, Wanner J (1999) Water Sci Technol 40(4–5):177–185

  6. 6.

    Ahn JT, Daidou T, Tsuneda S, Hirata A (2002) Water Res 36:403–412. DOI 10.1016/S0043-1354(01)00222-6

  7. 7.

    Kerrn-Jespersen JP, Henze M (1993) Water Res 27(4):617–624. DOI 10.1016/0043-1354(93)90171-D

  8. 8.

    Meinhold J, Filipe CDM, Daigger GT, Isaacs S (1999) Water Sci Technol 39(1):31–42

  9. 9.

    Falkentoft C, Harremoes P, Mosbaek H, Wilderer P (2001) Water Sci Technol 43(1):335–342

  10. 10.

    Wachtmeister A, Kuba T, van Loosdrecht MCM, Heijnen JJ (1997) Water Res 31(3):471–478. DOI 10.1016/S0043-1354(96)00281-3

  11. 11.

    Zeng RJ, Saunders AM, Yuan Z, Blackall LL, Keller J (2003) Biotechnol Bioeng 83(2):140–148. DOI 10.1002/bit.10652

  12. 12.

    Sudiana I, Mino T, Satoh H, Nakamura K, Matsuo T (1999) Water Sci Technol 39(6):29–35

  13. 13.

    Filipe CDM, Daigger GT, Grady CPLG (2001) Biotechnol Bioeng 76(1):17–31. DOI 10.1002/bit.1022

  14. 14.

    Liu W-T, Mino T, Matsuo T, Nakamura K (1997) Water Res 31(6):1430–1438. DOI 10.1016/S0043-1354(96)00352-1

  15. 15.

    Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Appl Environ Microbiol 65(9):4077–4084

  16. 16.

    Osada T, Haga K, Harada Y (1991) Water Res 25(11):1377–1388. DOI 10.1016/0043-1354(91)90116-8

  17. 17.

    Demuynck C, Vanrolleghem P, Mingneau C, Liessens J, Verstraete W (1994) Water Sci Technol 30(4):169–179

  18. 18.

    Hamamoto Y, Tabata S, Okubo Y (1997) Water Sci Technol 35(1):145–152

  19. 19.

    Serafim LS, Lemos PC, Reis MAM (2002) Water Sci Technol 46(4–5):179–184

  20. 20.

    American Public Health Association (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington

  21. 21.

    Almeida JS, Júlio SM, Reis MAM, Carrondo MJT (1995) Biotechnol Bioeng 46(3):194–201. DOI 10.1002/bit.26040303

  22. 22.

    Henze M, Harremoes P, Jansen JC, Arvin E (1997) Wastewater treatment—biological and chemical processes, 2nd edn. Springer, Berlin Heidelberg New York

  23. 23.

    Garrido JM, van Benthum WAJ, van Loosdrecht MCM, Heijnen JJ (1997) Biotechnol Bioeng 53(2):168–178

  24. 24.

    Ng WJ, Ong SL, Hu JY (2001) Water Sci Technol 43(3):139–146

  25. 25.

    Smolders GJF, van der Meij J, Van Loosdrecht MCM, Heijnen JJ (1994) Biotechnol Bioeng 43(6):461–470. DOI 10.1002/bit.260430605

  26. 26.

    Tasli R, Artan N, Orhon D (1997) Water Sci Technol 35(1):75–80

  27. 27.

    Sorm R, Wanner J, Saltarelli R, Bortone G, Tilche A (1997) Water Sci Technol 35(10):87–94

  28. 28.

    Choi E, Daehwan R (2001) Water Res 35(7):1748–1756. DOI 10.1016/S0043-1354(00)00434-6

  29. 29.

    Doyle J, Watts S, Solley D, Keller J (2001) Water Sci Technol 43(3):315–322

  30. 30.

    Glass C, Silverstein J (1998) Water Res 32(3):831–839. DOI 10.1016/S0043-1354(97)00260-1

  31. 31.

    Buys BR, Mosquera-Corral A, Sánchez M, Méndez R (2000) Water Sci Technol 41(12):113–120

  32. 32.

    Surmacz-Górska J, Cichon A, Miksch K (1997) Water Sci Technol 36(10):73–78

  33. 33.

    Takai T, Hirata A, Yamauchi K, Inamori Y (1997) Water Sci Technol 35(6):101–108

  34. 34.

    Welander U, Henrysson T, Welander T (1998) Water Res 32(5):1564–1570. DOI 10.1016/S0043-1354(97)00351-5

  35. 35.

    Oehmen A (2004) The competition between polyphosphate-accumulating organisms and glycogen accumulating organisms in the enhanced biological phosphorus removal process. PhD Thesis, School of Engineering, Advanced Water Management Centre, University of Queensland

  36. 36.

    Chen Y, Randall AA, McCue T (2004) Water Res 38(1):27–36. DOI 10.1016/j.watres.2003.08.025

Download references

Acknowledgements

F. Freitas acknowledges Fundação para Ciência e a Tecnologia for grant PRAXIS XXI/BD/11346/97. The authors acknowledge the financial support of EUREKA Programme EU 1697.

Author information

Correspondence to Maria A. M. Reis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freitas, F., Temudo, M. & Reis, M.A.M. Microbial population response to changes of the operating conditions in a dynamic nutrient-removal sequencing batch reactor. Bioprocess Biosyst Eng 28, 199–209 (2005). https://doi.org/10.1007/s00449-005-0029-9

Download citation

Keywords

  • Biological nutrient removal
  • Sequencing batch reactor
  • Phosphorus-accumulating organisms
  • Denitrifying phosphorus-accumulating organisms
  • Glycogen-accumulating organisms
  • Kinetics