Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths

  • 641 Accesses

  • 44 Citations

Abstract

Oxygen mass transfer represents the most important parameter involved in the design and operation of mixing-sparging equipment for bioreactors. It can be described and analyzed by means of the mass transfer coefficient, k L a. The k L a values are affected by many factors such as geometrical and operational characteristics of the vessels, media composition, type, concentration and microorganism morphology, and biocatalysts properties. The efficiency of oxygen transfer could be enhanced by adding oxygen-vectors in broths, such as hydrocarbons or fluorocarbons, without increasing the energy consumption for mixing or aeration. The experimental results obtained for simulated broths indicated a considerable increase of k L a in the presence of n-dodecane, and the existence of a certain value of n-dodecane concentration that corresponds to a maximum mass transfer rate of oxygen. The magnitude of the positive effect of n-dodecane depends both on the broths’ characteristics and operational conditions of the bioreactor.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Abbreviations

d :

stirrer diameter, mm

d′:

oxygen electrode diameter, mm

D :

bioreactor diameter, mm

h :

distance from the inferior stirrer to the bioreactor bottom, mm

H :

bioreactor height, mm

k L a :

oxygen mass transfer coefficient, s-1

l :

impeller blade length, mm

I’ :

oxygen electrode immersed length, mm

P :

power consumption for mixing of non-aerated broths, W

P a :

power consumption for mixing of aerated broths, W

(P a/V):

specific power input, W/m3

s :

baffle width, mm

v S :

superficial air velocity, m/s

V :

volume of medium, m3

w :

impeller blade height, mm

φ :

volumetric fraction of oxygen-vector

η a :

apparent viscosity, Pa*s

ρ :

density, kg/m3

References

  1. 1.

    MacLean GT (1977) Oxygen diffusion rates in organic fermentation broths. Proc Biochem 12:22-28

  2. 2.

    Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen-vectors. Biotechnol Adv 7:1-8

  3. 3.

    Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427-435

  4. 4.

    Ho CS, Ju LK, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110-1118

  5. 5.

    Mattiasson B, Adlercreutz P (1983)Enzymatic peptide synthesis in organic media. Ann NY Acad Sci 413:545-553

  6. 6.

    McMillan JD, Wang DIC (1987)Enhanced oxygen transfer using oil-in-water dispersions. Ann NY Acad Sci 506:569-574

  7. 7.

    Mattiasson B, Adlercreutz P (1987) Organic solvents for bioorganic synthesis. Trends Biotechnol 5:250-258

  8. 8.

    Mimura A, Kawano T, Kodaina R (1969) Air solubility in hydrocarbons. J Ferm Technol 47:229-236

  9. 9.

    Yoshida F, Yamane T, Miyamoto M (1970) The increase oxygen diffusion rates in broths adding organic substrates. Ind Eng Chem Proc Des Dev 9:570-577

  10. 10.

    Yamane T, Yoshida F (1974) Oxygen transfer rates in fermentations on liquid organic substrates. J Ferm Technol 52:445-454

  11. 11.

    Battino R, Rettich TR, Tominaga T (1983) The solubility of oxygen and ozone in liquids. J Phys Chem Ref Data 12:163-169

  12. 12.

    Wilhelm E, Battino R (1986) The solubility of gases in liquids. 17. The solubility of gases in carbon tetrachloride. Chem Rev 73:214-220

  13. 13.

    Battino R, Johnson SA, Clever HL (1986) The solubility of nitrogen and air in liquids. Solubility Data Ser 7:414-420

  14. 14.

    Ju LK, Ho CS (1989) Oxygen diffusion coefficient and solubility in n-hexadecane. Biotechnol Bioeng 34:1221-1230

  15. 15.

    Linek V, Benes P (1976) Analysis of gas absorption in emulsions of n-alkanes in water. Chem Eng Sci 31:1037-1043

  16. 16.

    Oniscu C, Cascaval D (2002) Biochemical engineering and biotechnology. 1. Biotechnological processes engineering. InterGlobal, Iasi

  17. 17.

    Moo-Young M, Cooney CL, Humphrey AE (eds) (1985) Comprehensive biotechnology, vol 2. Pergamon, Oxford

  18. 18.

    Ozbek B, Gayik S (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Proc Biochem 36:729-736

  19. 19.

    Montes FY, Catalan J, Galan M (1999) Prediction of kLa in yeast broths. Proc Biochem 34:549-561

  20. 20.

    Wise DL, Wang DIC, Mateles RI (1969) Use of glucose oxidase system to measure oxygen transfer rates. Biotechnol Bioeng 11:647-660

  21. 21.

    Oniscu C, Galaction AI, Cascaval D (2003) Studies on oxygen mass transfer in stirred bioreactors. 1. Simulated fermentation broths. Roum Biotechnol Lett 8:1293-1302

Download references

Author information

Correspondence to Dan Cascaval.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galaction, A., Cascaval, D., Oniscu, C. et al. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths. Bioprocess Biosyst Eng 26, 231–238 (2004). https://doi.org/10.1007/s00449-004-0353-5

Download citation

Keywords

  • stirred bioreactor
  • oxygen-vector
  • k L a
  • simulated broths