Advertisement

Deciding and verifying network properties locally with few output bits

  • Heger Arfaoui
  • Pierre Fraigniaud
  • David IlcinkasEmail author
  • Fabien Mathieu
  • Andrzej Pelc
Original research
  • 15 Downloads

Abstract

Given a boolean predicate on labeled networks (e.g., the network is acyclic, or the network is properly colored, etc.), deciding in a distributed manner whether a given labeled network satisfies that predicate typically consists, in the standard setting, of every node inspecting its close neighborhood, and outputting a boolean verdict, such that the network satisfies the predicate if and only if all nodes output true. In this paper, we investigate a more general notion of distributed decision in which every node is allowed to output a constant number \(b\ge 1\) of bits, which are gathered by a central authority emitting a global boolean verdict based on these outputs, such that the network satisfies the predicate if and only if this global verdict equals true. We analyze the power and limitations of this extended notion of distributed decision.

Keywords

Distributed decision Distributed verification Locality Network 

Notes

References

  1. 1.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self stabilization. Theor. Comput. Sci. 186(1–2), 199–230 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N.: Subdivided graphs have linear ramsey numbers. J. Graph Theory 18(4), 343–347 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angluin, D.: Local and global properties in networks of processors (Extended Abstract). In: Proceedings of 12th Annual ACM Symposium on Theory of Computing (STOC), pp. 82–93 (1980)Google Scholar
  4. 4.
    Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-freeness. In: Proceedings of 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 15–28 (2014)Google Scholar
  5. 5.
    Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-size outputs. In: Proceedings of 15th Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 133–147 (2013)Google Scholar
  6. 6.
    Awerbuch, B., Patt-Shamir, B., Varghese G., Dolev, S.: Self-stabilization by local checking and global reset. In: Proceedings of Workshop on Distributed Algorithms and Graphs (WDAG), Springer, LNCS 857, pp. 326–339 (1994)Google Scholar
  7. 7.
    Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: What can be verified locally? J. Comput. Syst. Sci. 97, 106–120 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Becker, F., Kosowski, A., Nisse, N., Rapaport, I., Suchan,K.: Allowing each node to communicate only once in a distributed system: shared whiteboard models. In: Proceedings of 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 11–17 (2012)Google Scholar
  9. 9.
    Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding a referee to an interconnection network: What can(not) be computed in one round. In: Proceedings of 25th IEEE International Symposium on Parallel and Distributed Proceedings (IPDPS), pp. 508–514 (2011)Google Scholar
  10. 10.
    Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Travers, C.: Challenges in fault-tolerant distributed runtime verification. In: proceedings of 7th International Symposium on Leveraging Applications of Formal Methods, Verification and ValidationGoogle Scholar
  11. 11.
    Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: Proceedings of 43rd ACM Symposium on Theory of Computing (STOC), (2011)Google Scholar
  12. 12.
    Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Inf. 36(6), 447–462 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Acad. Sci. Hung. 14(3–4), 295–315 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Even, G., Fischer, O., Fraigniaud, P., Gonen, T., Levi, R., Medina, M., Montealegre, P., Olivetti, D., Oshman, R., Rapaport, I., Todinca,I.: Three notes on distributed property testing. In: Proceedings on 31st International Symposium on Distributed Computing (DISC), pp. 15:1–15:30 (2017)Google Scholar
  15. 15.
    Feuilloley, L., Fraigniaud, P.: Randomized local network computing. In: Proceedings of 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 340–349 (2015)Google Scholar
  16. 16.
    Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119, 1–25 (2016)Google Scholar
  17. 17.
    Fraigniaud,P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proceedings on 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 157–165 (2013)Google Scholar
  18. 18.
    Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on local decision. In: Proceedings on 16th International Conference on Principles of Distributed Systems (OPODIS), pp. 224–238 (2012)Google Scholar
  19. 19.
    Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In: Proceedings of 22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 31–45 (2015)Google Scholar
  20. 20.
    Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed decision. In: Proceedings of 26th International Symposium on Distributed Computing (DISC), pp. 371–385 (2012)Google Scholar
  21. 21.
    Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35:1–35:6 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I.: Lower bounds for single-interaction distributed Arthur–Merlin and Merlin–Arthur protocols. In: Proceedings of 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO) (2019)Google Scholar
  23. 23.
    Göös M., Suomela, J.: Locally checkable proofs. In: Proceedings of 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)Google Scholar
  24. 24.
    Itkis, G., Levin, L. A.: Fast and lean self-stabilizing asynchronous protocols. In: Proceedings of 35th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 226–239 (1994)Google Scholar
  25. 25.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, Hoboken (2007)Google Scholar
  26. 26.
    Katz, S., Perry, K.: Self-stabilizing extensions to for message-passing systems. Distrib. Comput. 7, 17–26 (1993)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: 37th ACM Symposium on Principles of Distributed Computing (PODC), pp. 255–264 (2018)Google Scholar
  28. 28.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  30. 30.
    Litovsky, I., Metivier, Y., Zielonka, W.: On the recognition of families of graphs with local computations. Inf. Comput. 118(1), 110–119 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Naor, Moni, Parter, Merav, Yogev, Eylon.: The power of distributed verifiers in interactive proofs, CoRR, arXiv:1812.10917 (2018)
  32. 32.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Neumann, B.H.: On ordered groups. Am. J. Math. 71(1), 1–18 (1949)CrossRefzbMATHGoogle Scholar
  34. 34.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 2(1), 264–286 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of 11th ACM Symposium on Theory of Computing (STOC), pp. 209–213 (1979)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.South Mediterranean UniversityTunisTunisia
  2. 2.CNRS and University Paris DiderotParisFrance
  3. 3.CNRS and Univ. BordeauxTalenceFrance
  4. 4.Nokia Bell Labs FranceParisFrance
  5. 5.Université du Québec en OutaouaisGatineauCanada

Personalised recommendations