Advertisement

Distributed Computing

, Volume 32, Issue 4, pp 291–315 | Cite as

Embedded pattern formation by asynchronous robots without chirality

  • Serafino Cicerone
  • Gabriele Di Stefano
  • Alfredo NavarraEmail author
Article

Abstract

We consider the Embedded Pattern Formation (epf) problem introduced in Fujinaga et al. (SIAM J Comput 44(3):740–785, 2015). Given a set F of distinct points in the Euclidean plane (called here fixed-points) and a set R of robots such that \(|R|=|F|\), the problem asks for a distributed algorithm that moves robots so as to occupy all points in F. Initially, each robot occupies a distinct position. When active, a robot operates in standard Look-Compute-Move cycles. In one cycle, a robot perceives the current configuration in terms of the robots’ positions and the fixed-points (Look) according to its own coordinate system, decides whether to move toward some direction (Compute), and in the positive case it moves (Move). Cycles are performed asynchronously for each robot. Robots are oblivious, anonymous, silent and execute the same deterministic algorithm. In the mentioned paper, the problem has been investigated by endowing robots with chirality, that is they share a common left-right orientation. Here we consider epf without chirality, and we fully characterize when it can be solved by designing a deterministic distributed algorithm that works for all configurations but those identified as unsolvable. The algorithm has been designed according to a rigorous approach, characterized by the use of logical predicates associated to each move used by the robots. This induces a greater level of detail that provides us rigorous bases to state the correctness of the algorithm.

Keywords

Distributed coordination Autonomous mobile robots Pattern formation Oblivious Asynchronous Logical predicate 

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6), 459–487 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Formation of general position by asynchronous mobile robots under one-axis agreement. In: Proceeding of 10th International ’l WS on Algorithms and Computation (WALCOM), LNCS, vol. 9627, pp. 80–91. Springer (2016)Google Scholar
  4. 4.
    Bramas, Q., Tixeuil, S.: Brief Announcement: Probabilistic asynchronous arbitrary pattern formation. In: Proceedings of 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC) (2016)Google Scholar
  5. 5.
    Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous embedded pattern formation without orientation. In: Proceedings of 30th International ’l Symposium on Distributed Computing (DISC), LNCS, vol. 9888, pp. 85–98. Springer (2016)Google Scholar
  6. 6.
    Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distrib. Comput. (2018).  https://doi.org/10.1007/s00446-018-0325-7 zbMATHGoogle Scholar
  7. 7.
    Cicerone, S., Di Stefano, G., Navarra, A.: Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Brief Announcement: Certified universal gathering in \(R^2\) for oblivious mobile robots. In: Proceedings of 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC) (2016)Google Scholar
  11. 11.
    D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28(2), 131–145 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power of anonymous mobile robots. In: Proceedings of 36th IEEE International ’l Conference on Distributed Computing Systems, (ICDCS), pp. 293–302. IEEE (2016)Google Scholar
  17. 17.
    Di Stefano, G., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum traveled distance. Inf. Comput. 254, 377–391 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. TAAS 3(4), 16:1–16:20 (2008)Google Scholar
  20. 20.
    Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots perpetual exploration algorithm. In: Proceedings of 6th International ’l Work on Structured Object-Oriented Formal Language and Method (SOFL+MSVL), Lecture Notes in Computer Science, vol. 10189, pp. 201–219 (2017)Google Scholar
  21. 21.
    Donald, B.R., Jennings, J.S., Rus, D.: Information invariants for distributed manipulation. I. J. Robotics Res. 16(5), 673–702 (1997)Google Scholar
  22. 22.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, (2012)Google Scholar
  23. 23.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. 30, 413–457 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through optimum matching by oblivious corda robots. In: Proceedings of 14th International ’l Conference on Principles of Distributed Systems (OPODIS), LNCS, vol. 6490, pp. 1–15. Springer (2010)Google Scholar
  27. 27.
    Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern formation by anonymous oblivious mobile robots. In: Proceedings of 26th International ’l Symposium on Distributed Computing (DISC), LNCS, vol. 7611, pp. 312–325. Springer (2012)Google Scholar
  28. 28.
    Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ghike, S., Mukhopadhyaya, K.: A distributed algorithm for pattern formation by autonomous robots, with no agreement on coordinate compass. In: Proceedings of 6th International ’l Conference on Distributed Computing and Internet Technology, (ICDCIT), LNCS, vol. 5966, pp. 157–169. Springer (2010)Google Scholar
  30. 30.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: An optimal result. In: Proceedings of 21st International ’l Symposium on Distributed Computing (DISC), LNCS, vol. 4731, pp. 298–312. Springer (2007)Google Scholar
  31. 31.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Mamino, M., Viglietta, G.: Square formation by asynchronous oblivious robots. In: Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG), pp. 1–6 (2016)Google Scholar
  33. 33.
    Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: The case of ring gathering. In: Proceedings of 16th International ’l Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS, vol. 8756, pp. 237–251. Springer (2014)Google Scholar
  34. 34.
    Parker, L.E.: On the design of behavior-based multi-robot teams. Adv. Robot. 10(6), 547–578 (1995)Google Scholar
  35. 35.
    Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile robot. Theory Comput. Syst. 38, 539–558 (2005)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Romanishin, J., Gilpin, K., Rus, D.: M-blocks: Momentum-driven, magnetic modular robots. In: Proceedings of IEEE/RSJ International ’l Conference on Intelligent Robots and Systems, pp. 4288–4295. IEEE (2013)Google Scholar
  37. 37.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three dimensional euclidean space. In: Proceedings of 29th International ’l Symposium on Distributed Computing (DISC), LNCS, vol. 9363, pp. 92–106. Springer (2015)Google Scholar
  40. 40.
    Yamauchi, Y., Uehara, T., Yamashita, M.: Brief Announcement: Pattern formation problem for synchronous mobile robots in the three dimensional euclidean space. In: Proceedings of 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC) (2016)Google Scholar
  41. 41.
    Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asynchronous oblivious mobile robots. In: Proceedings of 28th International ’l Symposium on Distributed Computing, (DISC), LNCS, vol. 8784, pp. 137–151. Springer (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversitá degli Studi dell’AquilaL’AquilaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversitá degli Studi di PerugiaPerugiaItaly

Personalised recommendations