Advertisement

Distributed Computing

, Volume 31, Issue 4, pp 273–287 | Cite as

Smoothed analysis of dynamic networks

  • Michael Dinitz
  • Jeremy T. Fineman
  • Seth Gilbert
  • Calvin Newport
Article
  • 36 Downloads

Abstract

In this paper, we generalize the technique of smoothed analysis to apply to distributed algorithms in dynamic networks in which the network graph can change from round to round. Whereas standard smoothed analysis studies the impact of small random perturbations of input values on algorithm performance metrics, our proposed dynamic network version of smoothed analysis studies the impact of random perturbations of the underlying changing network topologies. Similar to the original application of smoothed analysis, our goal is to study whether known strong lower bounds in these models are robust or fragile: do they withstand small (random) perturbations, or do such deviations push the graphs far enough from a precise pathological instance to enable much better performance? Fragile lower bounds are likely not relevant for real-world deployment, while robust lower bounds represent a true difficulty caused by dynamic behavior. We apply this technique to three standard dynamic network problems with known strong worst-case lower bounds: random walks, flooding, and aggregation. We prove that these bounds provide a spectrum of robustness when subjected to smoothing—some are fragile (random walks), some are moderately fragile (flooding), and some are robust (aggregation).

Keywords

Smoothed analysis Dynamic networks Distributed algorithms Flooding Aggregation Random walks 

References

  1. 1.
    Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and efficient computation in dynamic peer-to-peer networks. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (2012)Google Scholar
  2. 2.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Proceedings of the International Colloquium on Automata, Languages and Programming (2008)Google Scholar
  3. 3.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE/ACM Trans Netw. 14(SI), 2508–2530 (2006)MathSciNetMATHGoogle Scholar
  4. 4.
    Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (2012)Google Scholar
  5. 5.
    Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (2012)Google Scholar
  6. 6.
    Denysyuk, O., Rodrigues, L.: Random walks on evolving graphs with recurring topologies. In: Proceedings of the International Symposium on Distributed Computing (2014)Google Scholar
  7. 7.
    Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information spreading in dynamic networks. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (2013)Google Scholar
  8. 8.
    Ghaffari, M., Lynch, N., Newport, C.: The cost of radio network broadcast for different models of unreliable links. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (2013)Google Scholar
  9. 9.
    Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks via network coding. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (2011)Google Scholar
  10. 10.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proceedings of the Annual Symposium on the Foundations of Computer Science (2000)Google Scholar
  11. 11.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of the Annual Symposium on the Foundations of Computer Science (2003)Google Scholar
  12. 12.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the ACM Symposium on Theory of Computing (2010)Google Scholar
  13. 13.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  14. 14.
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (2011)Google Scholar
  15. 15.
    Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 1–46. János Bolyai Mathematical Society (1996)Google Scholar
  16. 16.
    Newport, C.: Lower bounds for structuring unreliable radio networks. In: Proceedings of the International Symposium on Distributed Computing (2014)Google Scholar
  17. 17.
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the Workshop on Foundations of Mobile Computing (2005)Google Scholar
  18. 18.
    Sarma, A.D., Molla, A.R., Pandurangan, G.: Fast distributed computation in dynamic networks via random walks. In: Proceedings of the International Symposium on Distributed Computing (2012)Google Scholar
  19. 19.
    Spielman, D.A., Teng, S.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)CrossRefGoogle Scholar
  21. 21.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michael Dinitz
    • 1
  • Jeremy T. Fineman
    • 2
  • Seth Gilbert
    • 3
  • Calvin Newport
    • 2
  1. 1.Johns Hopkins UniversityBaltimoreUSA
  2. 2.Georgetown UniversityWashingtonUSA
  3. 3.National University of SingaporeSingaporeSingapore

Personalised recommendations