Distributed Computing

, Volume 32, Issue 6, pp 493–504 | Cite as

Search on a line with faulty robots

  • Jurek Czyzowicz
  • Evangelos Kranakis
  • Danny KrizancEmail author
  • Lata Narayanan
  • Jaroslav Opatrny


We consider the problem of searching on a line using n mobile robots, of which at most f are faulty, and the remaining are reliable. The robots start at the same location and move in parallel along the line with the same speed. There is a target placed on the line at a location unknown to the robots. Reliable robots can find the target when they reach its location, but faulty robots cannot detect the target. Our goal is to design a parallel algorithm minimizing the competitive ratio, represented by the worst case ratio between the time of arrival of the first reliable robot at the target, and the distance from the source to the target. If \(n \ge 2f+2\), there is a simple algorithm with a competitive ratio of 1. For \(f< n < 2f+2\) we develop a new class of algorithms, called proportional schedule algorithms. For any given (nf), we give a proportional schedule algorithm A(nf), whose competitive ratio is
$$\begin{aligned} \left( \frac{4f+4}{n} \right) ^{\frac{2f+2}{n}} \left( \frac{4f+4}{n} -2 \right) ^{1-\frac{2f+2}{n}} + 1. \end{aligned}$$
Setting \(a=n/f\) as a constant, the asymptotic competitive ratio is \(\left( 4/a \right) ^{2/a} \left( 4/a -2\right) ^{1-2/a } + 1\). Our search algorithm is easily seen to be optimal for the case \(n=f+1\). We also show that as n tends to \(\infty \) the competitive ratio of our algorithm for the case \(n = 2f+1\) approaches 3 and this is optimal. More precisely, we show that asymptotically (after excluding small order terms), the competitive ratio of our proportional schedule algorithm \(A(2f+1,f)\) is at most \(3 + \frac{4\ln n}{n}\), while any search algorithm has a lower bound \(3 + \frac{2\ln n}{n}\) on its competitive ratio.


Search on a line Faulty robots Cow-path problem Competitive ratio 


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Alphen aan den Rijn (2002)zbMATHGoogle Scholar
  5. 5.
    Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search theory: a game-theoretic perspective. Springer Science & Business Media, Berlin (2014)zbMATHGoogle Scholar
  6. 6.
    Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3), 143–154 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beck, A., Newman, D.: Yet more on the linear search problem. Isr. J. Math. 8(4), 419–429 (1970)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)CrossRefGoogle Scholar
  11. 11.
    Bose, P., De Carufel, J.L., Durocher, S.: Revisiting the problem of searching on a line. In: 21st European Symposium on Algorithms (ESA 2013), LNCS, vol. 8125, pp. 205–216. Springer (2013)Google Scholar
  12. 12.
    Bouzid, Z., Potop-Butucaru, M., Tixeuil, S.: Optimal byzantine-rezilient convergence in uni-dimensional robot network. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)CrossRefGoogle Scholar
  13. 13.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Tran. Robot. 21(3), 376–386 (2005)CrossRefGoogle Scholar
  14. 14.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) Ad-hoc, mobile, and wireless networks, LNCS, vol. 6811, pp. 346–359. Springer, Berlin (2011)CrossRefGoogle Scholar
  15. 15.
    Chrobak, M., Gasieniec, L., T., G., Martin, R.: Group search on the line. In: Proceedings of SOFSEM 2015, LNCS 8939, pp. 164–176. Springer (2015)Google Scholar
  16. 16.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: Monitoring a graph using faulty mobile robots. In: Algorithms and Computation—Proceedings of 26th International Symposium, ISAAC 2015, pp. 343–354 (2015)Google Scholar
  19. 19.
    Défago, X., Gradinariu, M., Messika, S., Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. Proc. DISC 2006, 46–60 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of 32nd Annual Symposium on FOCS, pp. 298–303. IEEE Computer Society (1991)Google Scholar
  22. 22.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM symposium on Principles of distributed computing, pp. 77–86. ACM (2012)Google Scholar
  24. 24.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111, 1027–1031 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gluss, B.: An alternative solution to the lost at sea problem. Naval Res. Logist. Quart. 8(1), 117–122 (1961)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). In: Ding-Zhu, D., Hsu, F. (eds.) Combinatorial network theory, pp. 125–212. Springer, Berlin (1996)CrossRefGoogle Scholar
  28. 28.
    Isbell, J.R.: Pursuit around a hole. Naval Res. Logist. Quart. 14(4), 569–571 (1967)CrossRefGoogle Scholar
  29. 29.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kleinberg, J.: On-line search in a simple polygon. In: Proceedings of SODA, pp. 8–15. SIAM (1994)Google Scholar
  31. 31.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the forty-second ACM symposium on Theory of computing, pp. 513–522. ACM (2010)Google Scholar
  32. 32.
    Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)CrossRefGoogle Scholar
  33. 33.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  34. 34.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  35. 35.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Proceedings of ICALP, LNCS, vol. 372, pp. 610–620. Springer (1989)Google Scholar
  36. 36.
    Schuierer, S.: Lower bounds in on-line geometric searching. Comput. Geom. 18(1), 37–53 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. Principles of Distributed Systems pp. 333–349 (2006)Google Scholar
  38. 38.
    Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)CrossRefGoogle Scholar
  39. 39.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of 2nd international conference on Autonomous agents, pp. 47–53. ACM (1998)Google Scholar
  40. 40.
    Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dept. d’informatiqueUniversité d’OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada

Personalised recommendations