Advertisement

Bulletin of Volcanology

, 82:8 | Cite as

Fabrics, facies, and flow through a large-volume ignimbrite: Pampa De Oxaya, Chile

  • E. S. PlatzmanEmail author
  • R. S. J. Sparks
  • F. J. Cooper
Research Article
  • 92 Downloads

Abstract

The Miocene Oxaya Formation, exposed along the western Andean slope in northern Chile, represents one of the largest ignimbrite provinces on earth. In this study, magnetic fabric data were acquired from a ~ 1-km-long core drilled vertically through a single cooling unit of the Oxaya Formation the ca.22 Ma Cardones ignimbrite. Samples for magnetic analysis were obtained every 20 m from the fine-grained matrix of the core. Detailed measurements of the variation in bulk magnetic properties, including natural remanent magnetization (NRM), susceptibility, and anisotropy of magnetic susceptibility (AMS), were used to monitor changes in magnetic mineralogy as well as changes in the strength and orientation of the magnetic fabric throughout the flow. AMS ellipsoid orientation and shape reflect rapid deposition from a concentrated granular fluidized flow and constrain both the location of the source caldera for this catastrophic eruption and processes of transport and deposition in this large-volume ignimbrite. After utilizing the magnetic remanence to correct for rotation about the core axis, well-grouped and imbricated petrofabric orientations reveal a well-defined SW (247°) transport direction down a proto-Western Andean slope indicating syn- or post-welding flow and confirming the deformed Lauca caldera as the likely source of the eruption. Systematic variations in fabric shape (T) and intensity (P) with depth reveal a predominately oblate fabric toward the top and base of the flow and predominately prolate fabrics in the center. These vertical changes in fabric reveal that this massive, apparently homogeneous, deposit has a systematic layering. This layering reflects depth-dependent temperature variations, temporal changes in the flow boundary zone during deposition and post-depositional processes.

Keywords

Ignimbrite Magnetic anisotropy Mineral fabric Granular flow 

Notes

Acknowledgments

We are grateful to Jean des Rivières for granting access to the drill core and all the BHP staff in Chile who helped us during this study. We would also like to thank Scott Bogue at Occidental College for use of the Paleomagnetism Laboratory. This paper has also benefitted from the reviews of M. Ort and R. Cas.

Funding information

This work was funded by the BHP.

References

  1. Arason P, Levi S (2010) Maximum likelihood solution for inclination-only data in paleomagnetism. Geophys J Int 182(2):753–771Google Scholar
  2. Baer E, Fisher R, Fuller M, Valentine G (1997) Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility. J Geophys Res Solid Earth 102(B10):22565–22586Google Scholar
  3. Bowles JA, Jackson MJ, Berquó TS, Sølheid PA, Gee JS (2013) Inferred time-and temperature-dependent cation ordering in natural titanomagnetites. Nat Commun 4:1916Google Scholar
  4. Brandmeier M, Wörner G (2016) Compositional variations of ignimbrite magmas in the Central Andes over the past 26 Ma—a multivariate statistical perspective. Lithos 262:713–728Google Scholar
  5. Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54(6):504–520Google Scholar
  6. Branney MJ, Kokelaar PB (2002) Pyroclastic density currents and the sedimentation of ignimbrites. In: Memoir 27. Geological Society, London, p 143Google Scholar
  7. Breard EC, Lube G (2017) Inside pyroclastic density currents–uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet Sci Lett 458:22–36Google Scholar
  8. Breard EC, Dufek J, Lube G (2017) Enhanced mobility in concentrated pyroclastic density currents: an examination of a self-fluidization mechanism. Geophys Res Lett 45(2):654–664Google Scholar
  9. Breitkreuz C (2013) Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volcanol 75(4):705Google Scholar
  10. Cande S, Kent D (1995) Revised calibration of the geomagnetic timescale for the Late Cretaceaous and Cenozoic. J Geophys Res Solid Earth 89 100(B4):6095–6095Google Scholar
  11. Cañón-Tapia E, Mendoza-Borunda R (2014) Magnetic petrofabric of igneous rocks: lessons from pyroclastic density current deposits and obsidians. J Volcanol Geotherm Res 289:151–169Google Scholar
  12. Cas RAF, Wright HMN, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73(10):1583–1609Google Scholar
  13. Chadima M, Hrouda F (2009) Cureval 8.0: thermomagnetic curve browser for windows. Agico Inc., BrnoGoogle Scholar
  14. Chadima M, Jelínek V (2008) Anisoft 4.2.–anisotropy data browser. Contrib Geophys Geodesy 38(Special Issue):38–41Google Scholar
  15. Cisowski S (1981) Interacting vs. non-interacting single-domain behavior in natural and synthetic samples. Physic Earth Plan Inter 26:56–62Google Scholar
  16. Dedzo MG, Nédélec A, Nono A, Njanko T, Font E, Kamgang P, Njonfang E, Launeau P (2011) Magnetic fabrics of the Miocene ignimbrites from West-Cameroon: implications for pyroclastic flow source and sedimentation. J Volcanol Geotherm Res 203(3):113–132Google Scholar
  17. Dingwell D (1998) The glass transition in hydrous granitic melts. Phys Earth Planet Inter 107(1–3):1–8Google Scholar
  18. Doyle E, Hogg A, Mader H, Sparks R (2008) Modeling dense pyroclastic basal flows from collapsing columns. Geophys Res Lett 35(4)Google Scholar
  19. Druitt T (1998) Pyroclastic density currents. Geol Soc Lond, Spec Publ 145(1):145–182Google Scholar
  20. Ellwood BB (1982) Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: Central San Juan Mountains, southwest Colorado. Earth Planet Sci Lett 59(2):303–314Google Scholar
  21. Enkin RJ, Watson GS (1996) Statistical analysis of palaeomagnetic inclination data. Geophys J Int 126(2):495–504Google Scholar
  22. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow — emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56(3):205–220Google Scholar
  23. García M, Hérail G, Charrier R (1996) The Cenozoic forearc evolution in northern Chile: the western border of the Altiplano of Belén (Chile). In: Third International Symposium of Andean geodynamics, Andean geodynamics. ORSTOM editions. Collection Colloques et Seminaires, Saint Malo, p 362Google Scholar
  24. García M, Gardeweg M, Hérail G, Pérez de Arce C (2000) La ignimbrita Oxaya y la Caldera Lauca: un evento explosivo de gran volumen del Mioceno Inferior en la Región de Arica (Andes Centrales, 18–19 S). In: IX Congreso Geologico Chileno. pp 286–290Google Scholar
  25. García M, Gardeweg M, Clavero J, Hérail G (2004) Arica map: Tarapacá Region, scale 1: 250,000. Carta Geológica de Chile Serie Geología básica 84Google Scholar
  26. García M, Riquelme R, Farías M, Hérail G, Charrier R (2011) Late Miocene–Holocene canyon incision in the western Altiplano, northern Chile: tectonic or climatic forcing? J Geol Soc 168(4):1047–1060Google Scholar
  27. Geissman JW, Newberry NG, Peacor DR (1983) Discrete single-domain and pseudo-single-domain titanomagnetite particles in silicic glass of an ash-flow tuff. Can J Earth Sci 20(2):334–338Google Scholar
  28. Hargraves R, Johnson D, Chan C (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys Res Lett 18(12):2193–2196Google Scholar
  29. Hillhouse JW, Wells RE (1991) Magnetic fabric, flow directions, and source area of the Lower Miocene Peach Springs Tuff in Arizona, California, and Nevada. J Geophys Res Solid Earth (1978–2012) 96(B7):12443–12460Google Scholar
  30. Incoronato A, Addison F, Tarling D, Nardi G, Pescatore T (1983) Magnetic fabric investigations of pyroclastic deposits from Phlegrean fields, southern Italy. Nature 306(5942):461–463Google Scholar
  31. Jackson M, Bowles JA (2014) Curie temperatures of titanomagnetite in ignimbrites: effects of emplacement temperatures, cooling rates, exsolution, and cation ordering. Geochem Geophys Geosyst 15(11):4343–4368Google Scholar
  32. Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79(3–4):T63–T67Google Scholar
  33. Johnson H, Lowrie W, Kent DV (1975) Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles. Geophys J R Astron Soc 41(1):1–10Google Scholar
  34. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361Google Scholar
  35. Knight MD, Walker GP, Ellwood BB, Diehl JF (1986) Stratigraphy, paleomagnetism, and magnetic fabric of the Toba tuffs: constraints on the sources and eruptive styles. J Geophys Res Solid Earth 91(B10):10355–10382Google Scholar
  36. LaBerge RD, Porreca M, Mattei M, Giordano G, Cas RA (2009) Meandering flow of a pyroclastic density current documented by the anisotropy of magnetic susceptibility (AMS) in the quartz latite ignimbrite of the Pleistocene Monte Cimino volcanic centre (central Italy). Tectonophysics 466(1):64–78Google Scholar
  37. Lamarche G, Froggatt PC (1993) New eruptive vents for the Whakamaru ignimbrite (Taupo volcanic zone) identified from magnetic fabric study. N Z J Geol Geophys 36(2):213–222Google Scholar
  38. Le Pennec J-L, Chen Y, Diot H, Froger J-L, Gourgaud A (1998) Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study. Earth Planet Sci Lett 157(1–2):105–127Google Scholar
  39. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17(2):159–162Google Scholar
  40. Lowrie W, Fuller M (1971) On the AF demagnetization characteristics of multidomain TRM in magnetite. J Geophys Res Solid Earth 76:6339–6349Google Scholar
  41. MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bull Volcanol 53(1):45–59Google Scholar
  42. Marti J, Diez-Gil J, Ortiz R (1991) Conduction model for the thermal influence of lithic clasts in mixtures of hot gases and ejecta. J Geophys Res Solid Earth 96(B13):21879–21885Google Scholar
  43. Martín-Hernández F, Luneburg C, Aubourg M, Jackson M (2004) Magnetic fabric: methods and applications: Geol Soc London SpecGoogle Scholar
  44. Martinod J, Husson L, Roperch P, Guillaume B, Espurt N (2010) Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet Sci Lett 299(3–4):299–309Google Scholar
  45. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on earth. Bull Volcanol 66(8):735–748Google Scholar
  46. McFadden P, Reid A (1982) Analysis of palaeomagnetic inclination data. Geophys J R Astron Soc 69(2):307–319Google Scholar
  47. Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582Google Scholar
  48. Ort MH (1993) Eruptive processes and caldera formation in a nested downsagcollapse caldera: Cerro Panizos, Central Andes Mountains. J Volcanol Geotherm Res 56(3):221–252Google Scholar
  49. Ort MH, Orsi G, Pappalardo L, Fisher RV (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian ignimbrite, Italy. Bull Volcanol 65(1):55–72Google Scholar
  50. Ort MH, Newkirk TT, Vilas JF, Vazquez JA (2015) Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geol Soc Lond, Spec Publ 396(1):205–226Google Scholar
  51. Palmer H, MacDonald W, Gromme C, Ellwood B (1996) Magnetic properties and emplacement of the Bishop tuff, California. Bull Volcanol 58(2):101–116Google Scholar
  52. Palmer HC, MacDonald WD (1999) Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics 307(1-2):207–218Google Scholar
  53. Pioli L, Lanza R, Ort M, Rosi M (2008) Magnetic fabric, welding texture and strain fabric in the Nuraxi Tuff, Sardinia, Italy. Bull Volcanol 70(9):1123–1137Google Scholar
  54. Porreca M, Mattei M, Giordano G, De Rita D, Funiciello R (2003) Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy. J Geophys Res Solid Earth 108(B5)Google Scholar
  55. Ragan D, Sheridan M (1972) Compaction of the Bishop tuff, California. Geol Soc Am Bull 83(1):95–106Google Scholar
  56. Riehle J, Miller T, Bailey R (1995) Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model. Bull Volcanol 57(5):319–336Google Scholar
  57. Roche O, Buesch DC, Valentine GA (2016) Slow-moving and far-travelled dense pyroclastic flows during the peach spring super-eruption. Nat Commun 7:10890Google Scholar
  58. Russell JK, Quane SL (2005) Rheology of welding: inversion of field constraints. J Volcanol Geotherm Res 142(1–2):173–191Google Scholar
  59. Saito T, Ishikawa N, Kamata H (2004) Iron–titanium oxide minerals in block-and-ash-flow deposits: implications for lava dome oxidation processes. J Volcanol Geotherm Res 138(3–4):283–294Google Scholar
  60. Salas R, Kast R, Montecinos F, Salas I (1966) Geologia y Recursos Minerales del Departamento de Arica , Provincia de Tarapaca. Inst. de Invest. Geol. Boletin 21:130 pGoogle Scholar
  61. Scheuber E, Gonzalez G (1999) Tectonics of the Jurassic-early cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26° S): a story of crustal deformation along a convergent plate boundary. Tectonics 18(5):895–910Google Scholar
  62. Schlinger CM, Rosenbaum J, Veblen DR (1988) Fe-oxide microcrystals in welded tuff from southern Nevada: origin of remanence carriers by precipitation in volcanic glass. Geology 16(6):556–559Google Scholar
  63. Schröder W, Wörner G (1996) Widespread Cenozoic ignimbrites in N-Chile, W-Bolivia and S-Peru (17°-20°S/71°-68°E): stratigraphy, extension, correlation and origin. In: Third international symposium on Andean geodynamics. Inst. Fr. de Rec. Sci. pour le Dev. en Coop, pp 645–648Google Scholar
  64. Seaman SJ, McIntosh WC, Geissman JW, Williams ML, Elston WE (1991) Magnetic fabrics of the Bloodgood Canyon and Shelley peak tuffs, southwestern New Mexico: implications for emplacement and alteration processes. Bull Volcanol 53(6):460–476Google Scholar
  65. Sheridan MF, Ragan DM (1975) Compaction of ash-flow tuffs. In: Chilingarian GV, Wolf KH (eds) Compaction of coarse-grained sediments. Elsevier, Amsterdam, pp 677–707Google Scholar
  66. Sheridan MF, Wang Y (2005) Cooling and welding history of the Bishop Tuff in Adobe Valley and Chidago canyon, California. J Volcanol Geotherm Res 142(1–2):119–144Google Scholar
  67. Smith RL (1960) Zones and zonal variations in welded ash flows. In: U.S. Geol. Surv. Prof. Pap. pp 149–159Google Scholar
  68. Smith GM, Williams R, Rowley PJ, Parsons DR (2018) Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents. Bull Volcanol 80(8):67Google Scholar
  69. Sparks R, Stasiuk M, Gardeweg M, Swanson D (1993) Welded breccias in andesite lavas. J Geol Soc 150(5):897–902Google Scholar
  70. Sparks R, Tait S, Yanev Y (1999) Dense welding caused by volatile resorption. J Geol Soc 156(2):217–225Google Scholar
  71. Tarling D, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman & Hall, LondonGoogle Scholar
  72. Thomas I, Moyer T, Wikswo J Jr (1992) High resolution magnetic susceptibility imaging of geological thin sections: pilot study of a pyroclastic sample from the Bishop Tuff, California, USA. Geophys Res Lett 19(21):2139–2142Google Scholar
  73. Tobar B, Salas I (2015) Cuadrángulos Camaraca y Azapa, Provincia de Tarapacá. Escala 1:50.000Google Scholar
  74. Tosdal RM, Farrar E, Clark AH (1981) K-Ar geochronology of the late Cenozoic volcanic rocks of the cordillera occidental, southernmost Peru. J Volcanol Geotherm Res 10(1–3):157–173Google Scholar
  75. Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IE (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36(1):31–34Google Scholar
  76. van Zalinge M, Sparks R, Cooper F, Condon D (2016) Early Miocene large-volume ignimbrites of the Oxaya formation, Central Andes. J Geol Soc 173(5):716–733Google Scholar
  77. van Zalinge M, Sparks R, Evenstar L, Cooper F, Aslin J, Condon D (2017a) Using ignimbrites to quantify structural relief growth and understand deformation processes: implications for the development of the Western Andean slope, northernmost Chile. Lithosphere 9(1):29–45Google Scholar
  78. van Zalinge ME, Sparks RSJ, Blundy JD (2017b) Petrogenesis of the large-volume Cardones ignimbrite, Chile; development and destabilization of a complex magma–mush system. J Petrol 58(10):1975–2006Google Scholar
  79. van Zalinge M, Cashman K, Sparks R (2018) Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, northern Chile. Bull Volcanol 80(3):22Google Scholar
  80. Vogel, S., Vila, T. (1980) Cuadrangulos Arica y Poconchile. Region e Tarapaca. 1 Mapa Geologico 1: 100.000Google Scholar
  81. Willcock MA, Mattei M, Hasalová P, Giordano G, Cas RA, Morelli C (2015) Flow behaviour in the intra-caldera setting: an AMS study of the large (> 1290 km3) Permian Ora ignimbrite. Geol Soc Lond Spec Publ 396(1):177–204Google Scholar
  82. Wilson C, Walker GP (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc 139(5):581–592Google Scholar
  83. Wolff JA, Ellwood BB, Sachs SD (1989) Anisotropy of magnetic susceptibility in welded tuffs: application to a welded-tuff dyke in the Tertiary Trans-Pecos Texas volcanic province, USA. Bull Volcanol 51(4):299–310Google Scholar
  84. Worm HU, Jackson M (1999) The superparamagnetism of Yucca Mountain tuff. J Geophys Res Solid Earth 104(B11):25415–25425Google Scholar
  85. Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18-22 S): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27(2):205–240Google Scholar
  86. Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the west Andean escarpment at 18 S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345(1–4):183–198Google Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  • E. S. Platzman
    • 1
    Email author
  • R. S. J. Sparks
    • 2
  • F. J. Cooper
    • 2
  1. 1.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.School of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations