Advertisement

Bulletin of Volcanology

, 82:5 | Cite as

Clinopyroxene growth rates at high pressure: constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy)

  • B. BonechiEmail author
  • C. Perinelli
  • M. Gaeta
Research Article
  • 127 Downloads

Abstract

Clinopyroxene growth rates were experimentally determined in a K-basaltic rock from Campi Flegrei Volcanic District (south Italy). The primary objective was to provide constraints on the clinopyroxene crystallization kinetics at high pressure: we carried out a series of experiments at 0.8 GPa, 1030–1250 °C, 1 ≤ H2O ≤ 4 wt.%, with durations of 0.25, 3, 6 and 9 h. Overall, growth rate reaches a maximum value in the shortest experiments (~ 3·10−7 cm·s−1), decreasing to ~ 1·10−8 cm·s−1 in the longest duration runs. Temperature and water content do not seem to significantly affect the growth rate. Moreover, partition coefficients based on the crystal-liquid exchange show that mineral chemistry progressively approaches equilibrium with increasing run duration. Furthermore, to estimate the magma recharge of the deep reservoirs, we combined the determined growth rates with data from thermobarometry and from crystal size distribution analyses of clinopyroxenes in the most primitive scoria clasts of the Campi Flegrei Volcanic District (CFVD). We obtained a minimum residence time of ~ 5 months for the larger clinopyroxene population, and an ascent velocity of ~ 0.5·10−4 m·s−1 for the CFVD K-basaltic magma. The smaller clinopyroxene phenocrysts and microlite populations, however, suggest that the late stage of Procida magma crystallization took place in disequilibrium conditions.

Keywords

Crystal growth rate Alkaline basalt Clinopyroxene Crystal size distribution Chamber residence time Campi Flegrei 

Notes

Acknowledgments

We warmly thank the executive editor A. Harris, the associate editor K.V. Cashman and the reviewer F. Arzilli for their constructive comments that significantly improved our paper. We thank Luca Ziberna (BGI Bayreuth) for preparing APR16GL sample, M. Albano (CNR-IGAG) for help in electronic backscattered images and M. Serracino (CNR-IGAG) for help in EMP analyses. This research has been conducted with the financial support of the HP-HT Laboratory of the Earth Sciences Department, Sapienza University of Rome.

Supplementary material

445_2019_1342_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.03 mb)
445_2019_1342_MOESM2_ESM.xlsx (37 kb)
ESM 2 (XLSX 37.2 kb)
445_2019_1342_MOESM3_ESM.pdf (111 kb)
ESM 3 (PDF 110 kb)

References

  1. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Agostini C, Fortunati A, Arzilli F et al (2013) Kinetics of crystal evolution as a probe to magmatism at Stromboli (Aeolian Archipelago, Italy). Geochim Cosmochim Acta 110:135–151.  https://doi.org/10.1016/j.gca.2013.02.027 CrossRefGoogle Scholar
  3. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth—the case of the 1991-93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414.  https://doi.org/10.1007/BF00320974 CrossRefGoogle Scholar
  4. Armienti P, Tonarini S, Orazio MD (2007) Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. Geol Soc Am Spec Pap:265–276.  https://doi.org/10.1130/2007.2418(13)
  5. Armienti P, Perinelli C, Putirka KD (2013) A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). J Petrol 54:795–813.  https://doi.org/10.1093/petrology/egs085 CrossRefGoogle Scholar
  6. Arzilli F, Carroll MR (2013) Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib Mineral Petrol 166:1011–1027.  https://doi.org/10.1007/s00410-013-0906-1 CrossRefGoogle Scholar
  7. Arzilli F, Agostini C, Landi P, Fortunati A, Mancini L, Carroll MR (2015) Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments. Contrib Mineral Petrol 170:55–16.  https://doi.org/10.1007/s00410-015-1205-9 CrossRefGoogle Scholar
  8. Arzilli F, Piochi M, Mormone A, Agostini C, Carroll MR (2016) Constraining pre-eruptive magma conditions and unrest timescales during the Monte Nuovo eruption (1538 AD; Campi Flegrei, Southern Italy): integrating textural and CSD results from experimental and natural trachy-phonolites. Bull Volcanol 78:72–20.  https://doi.org/10.1007/s00445-016-1062-z CrossRefGoogle Scholar
  9. Asimow P, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132CrossRefGoogle Scholar
  10. Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512.  https://doi.org/10.1126/science.1064893 CrossRefGoogle Scholar
  11. Baker DR (2008) The fidelity of melt inclusions as records of melt composition. Contrib Mineral Petrol 156:377–395.  https://doi.org/10.1007/s00410-008-0291-3 CrossRefGoogle Scholar
  12. Bonechi B, Perinelli C, Gaeta M et al (2017) Experimental constraints on amphibole stability in primitive alkaline and calc-alkaline magmas. Period Mineral 86:231–245.  https://doi.org/10.2451/2017PM735 CrossRefGoogle Scholar
  13. Bonechi B, Perinelli C, Gaeta M et al (2019) Amphibole growth from a primitive alkaline basalt at 0.8 GPa: time-dependent compositional evolution, growth rate and competition with clinopyroxene. Lithos.  https://doi.org/10.1016/j.lithos.2019.105272
  14. Brugger CR, Hammer JE (2010a) Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet Sci Lett.  https://doi.org/10.1016/j.epsl.2010.09.046 CrossRefGoogle Scholar
  15. Brugger CR, Hammer JE (2010b) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965.  https://doi.org/10.1093/petrology/egq044 CrossRefGoogle Scholar
  16. Burkhard DJ (2002) Kinetics of crystallization: example of micro-crystallization in basalt lava. Contrib Mineral Petrol 142:724–737.  https://doi.org/10.1007/s00410-001-0321-x CrossRefGoogle Scholar
  17. Burkhard DJM (2005) Nucleation and growth rates of pyroxene, plagioclase, and Fe-Ti oxides in basalt under atmospheric conditions. Eur J Mineral 17:675–686.  https://doi.org/10.1127/0935-1221/2005/0017-0675 CrossRefGoogle Scholar
  18. Cashman KV (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Mineral Petrol 113:126–142CrossRefGoogle Scholar
  19. Cashman CV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contrib Mineral Petrol 99:292–305.  https://doi.org/10.1007/BF00371933 CrossRefGoogle Scholar
  20. Cecchetti A, Marianelli P, Sbrana A (2001) Prime evidenze della esistenza di un sistema di cristallizzazione profondo ai Campi Flegrei. Atti Soc Tosc Sci Nat Mem:1–7Google Scholar
  21. Chiarabba C, De Gori P, Speranza F (2008) The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet Sci Lett 268:408–423.  https://doi.org/10.1016/j.epsl.2008.01.036 CrossRefGoogle Scholar
  22. Clarke AB, Stephens S, Teasdale R et al (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 161:261–274.  https://doi.org/10.1016/j.jvolgeores.2006.11.007 CrossRefGoogle Scholar
  23. Conte AM, Perinelli C, Trigila R (2006) Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phases composition. J Volcanol Geotherm Res 155:179–200.  https://doi.org/10.1016/j.jvolgeores.2006.03.025 CrossRefGoogle Scholar
  24. Conte AM, Dolfi D, Gaeta M et al (2009) Experimental constraints on evolution of leucite-basanite magma at 1 and 10-4 GPa: implications for parental compositions of Roman high-potassium magmas. Eur J Mineral 21:763–782.  https://doi.org/10.1127/0935-1221/2009/0021-1934 CrossRefGoogle Scholar
  25. Couch S (2003) Experimental investigation of crystallization kinetics in a haplogranite system. Am Mineral 88:1471–1485CrossRefGoogle Scholar
  26. Couch S, Sparks RSJ, Carroll MR (2003) The kinetics of degassing-induced crystallization at Soufriere Hills Volcano, Montserrat. J Petrol 44:1477–1502.  https://doi.org/10.1093/petrology/44.8.1477 CrossRefGoogle Scholar
  27. D’Antonio M, Civetta L, Di Girolamo P (1999) Mantle source heterogeneity in the Campanian region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineral Petrol 67:163–192.  https://doi.org/10.1007/BF01161520 CrossRefGoogle Scholar
  28. De Astis G, Pappalardo L, Piochi M (2004) Procida volcanic history: new insights into the evolution of the Phlegraean Volcanic District (Campania region, Italy). Bull Volcanol 66:622–641.  https://doi.org/10.1007/s00445-004-0345-y CrossRefGoogle Scholar
  29. Devine JD, Gardner JE, Brack HP et al (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328.  https://doi.org/10.2138/am-1995-3-413 CrossRefGoogle Scholar
  30. Di Stefano R, Chiarabba C, Lucente F, Amato A (1999) Crustal and uppermost mantle structure in Italy. Geophys J Int 139:438–498CrossRefGoogle Scholar
  31. Di Stefano R, Bianchi I, Ciaccio MG et al (2011) Three-dimensional Moho topography in Italy: new constraints from receiver functions and controlled source seismology. Geochem Geophys Geosyst 12:1–15.  https://doi.org/10.1029/2011GC003649 CrossRefGoogle Scholar
  32. Dingwell DB, Bagdassarov NS, Bussod GY, Webb SL (1993) Magma rheology. In: Luth RH (ed) Short course handbook on experiments at high pressure and applications to Earth’s mantle, vol. 21Google Scholar
  33. Dowty E, Keil K, Prinz M (1974) Lunar pyroxene-phyric basalts: crystallization under supercooled conditions. J Petrol 15:419–453.  https://doi.org/10.1093/petrology/15.3.419 CrossRefGoogle Scholar
  34. Esposito R, Bodnar RJ, Danyushevsky LV et al (2011) Volatile evolution of magma associated with the solchiaro eruption in the Phlegrean Volcanic District (Italy). J Petrol 52:2431–2460.  https://doi.org/10.1093/petrology/egr051 CrossRefGoogle Scholar
  35. Fanara S, Botcharnikov RE, Palladino DM et al (2015) Volatiles in magmas related to the Campanian ignimbrite eruption: experiments vs. natural findings. Am Mineral 100:2284–2297.  https://doi.org/10.2138/am-2015-5033 CrossRefGoogle Scholar
  36. Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898.  https://doi.org/10.1016/j.epsl.2005.04.050 CrossRefGoogle Scholar
  37. Faure F, Trolliard G, Nicollet C, Montel JM (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145:251–263.  https://doi.org/10.1007/s00410-003-0449-y CrossRefGoogle Scholar
  38. Fedi M, Cella F, D’Antonio M, Florio G, Paoletti V, Morra V (2018) Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci Rep 8:1–19.  https://doi.org/10.1038/s41598-018-26346-z CrossRefGoogle Scholar
  39. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol.  https://doi.org/10.1007/BF00307281 CrossRefGoogle Scholar
  40. Giordano D, Romano C, Papale P, Dingwell DB (2004) The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem Geol 213:49–61.  https://doi.org/10.1016/j.chemgeo.2004.08.032 CrossRefGoogle Scholar
  41. Giordano D, Mangiacapra A, Potuzak M et al (2006) An expanded non-Arrhenian model for silicate melt viscosity: a treatment for metaluminous, peraluminous and peralkaline liquids. Chem Geol 229:42–56.  https://doi.org/10.1016/j.chemgeo.2006.01.007 CrossRefGoogle Scholar
  42. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134.  https://doi.org/10.1016/j.epsl.2008.03.038 CrossRefGoogle Scholar
  43. Granati SF (2016) The architecture of the magmatic feeding system of the Campi Flegrei Volcanic District: constraints from experimental petrology. Sapienza University of Rome, RomeGoogle Scholar
  44. Grove TL, Raudsepp M (1978) Effects of kinetics on the crystallization of quartz normative basalt 15597-an experimental study. Proc Lunar Planet Sci Conf 9:585–599Google Scholar
  45. Grove TL, Walker D (1977) Cooling histories of Apollo 15 quartz-normative basalts. Proc Lunar Planet Sci Conf 8:1501–1520Google Scholar
  46. Hammer JE (2006) Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet Sci Lett 248:618–637.  https://doi.org/10.1016/j.epsl.2006.04.022 CrossRefGoogle Scholar
  47. Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochemistry, pp 9–59Google Scholar
  48. Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:2021.  https://doi.org/10.1029/2001JB000281 CrossRefGoogle Scholar
  49. Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100:165–192.  https://doi.org/10.1016/S0377-0273(00)00136-0 CrossRefGoogle Scholar
  50. Helz RT, Wright T (1992) Differentiation and magma mixing on Kilauea’s east rift zone A further look at the eruptions of 1955 and 1960. Part I. The late 1955 lavas. Bull Volcanol 54:361–384CrossRefGoogle Scholar
  51. Hess K, Dingwell DD (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian on the nature and efficiency of magmatic processes. As pendence (H20 concentration in weight percent) for each. Am Mineral 81:1297–1300Google Scholar
  52. Hess KU, Dingwell DB, Webb SL (1995) The influence of excess alkalis on the viscosity of a haplogranitic melt. Am Mineral 80:297–304.  https://doi.org/10.2138/am-1996-9-1014 CrossRefGoogle Scholar
  53. Higgins MD (1994) Numerical modeling of crystal shapes in thin section: estimation of crystal habit and true size. Am Mineral 79:113–119Google Scholar
  54. Higgins MD (1998) Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. J Petrol 39:1307–1323.  https://doi.org/10.1093/petroj/39.7.1307 CrossRefGoogle Scholar
  55. Higgins DM (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116CrossRefGoogle Scholar
  56. Higgins MD (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral 87:1242–1243.  https://doi.org/10.2138/am-2002-0118 CrossRefGoogle Scholar
  57. Higgins MD, Roberge J (2003) Crystal size distribution of plagioclase and amphibole from Soufriere Hills Volcano, Montserrat: evidence for dynamic crystallization-textural coarsening cycles. J Petrol 44:1401–1411.  https://doi.org/10.1093/petrology/44.8.1401 CrossRefGoogle Scholar
  58. Iezzi G, Mollo S, Torresi G et al (2011) Experimental solidification of an andesitic melt by cooling. Chem Geol 283:261–273.  https://doi.org/10.1016/j.chemgeo.2011.01.024 CrossRefGoogle Scholar
  59. Johannes W, Bell PM, Mao HK et al (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38.  https://doi.org/10.1007/BF00372231 CrossRefGoogle Scholar
  60. Kirkpatrick RJ, Kuo L, Melchior J (1981) Crystal growth in incongruently-melting compositions: programmed cooling experiments with diopside. Am Mineral 66:223–241Google Scholar
  61. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92.  https://doi.org/10.1007/BF00307328 CrossRefGoogle Scholar
  62. Lentz RCF, Mcsween HY (2000) Crystallization of the basaltic shergottites: insights from crystal size distribution (CSD) analysis of pyroxenes. Meteorit Planet Sci 35:919–927.  https://doi.org/10.1111/j.1945-5100.2000.tb01481.x CrossRefGoogle Scholar
  63. Lesher CE, Cashman KV, Mayfield JD (1999) Kinetic controls on crystallization of Tertiary North Atlantic basalt and implications for the emplacement and cooling history of lava at site 989, Southeast Greenland Rifted Margn 1. In: Proceedings of the Ocean Drilling Program, Scientific Results. pp 135–148Google Scholar
  64. Lofgren GE (1974) An experimental study of plagioclase crystal morphology; isothermal crystallization. Am J Sci 274:243–273CrossRefGoogle Scholar
  65. Lofgren GE (1980) Experimental studies on the dynamic crystallization of silicate meltsGoogle Scholar
  66. Lofgren GE (1983) Effect of heterogeneous nucleation on basaltic textures: a dynamic crystallization study. J Petrol 24:229–255.  https://doi.org/10.1093/petrology/24.3.229 CrossRefGoogle Scholar
  67. Mangan MT (1990) Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawaii. J Volcanol Geotherm Res 44:295–302.  https://doi.org/10.1016/0377-0273(90)90023-9 CrossRefGoogle Scholar
  68. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Mineral Petrol 99:277–291.  https://doi.org/10.1007/BF00375362 CrossRefGoogle Scholar
  69. Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599.  https://doi.org/10.1093/petroj/39.4.553 CrossRefGoogle Scholar
  70. Mastrolorenzo G, Palladino DM, Pappalardo L, Rossano S (2017) Probabilistic-numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: multi-VEI scenarios as a tool for “full-scale” risk management. PLoS One 12:1–28.  https://doi.org/10.1371/journal.pone.0185756 CrossRefGoogle Scholar
  71. Melnik O, Sparks RSJ (2005) Control on conduit magma flows dynamics during lava dome building eruptions. J Geophys Res 110:B02209CrossRefGoogle Scholar
  72. Moretti R, Arienzo I, Orsi G et al (2013) The deep plumbing systemof ischia: a physico-chemicalwindowon the fluid-saturated and CO2-sustained neapolitanvolcanism (southern Italy). J Petrol 54:951–984.  https://doi.org/10.1093/petrology/egt002 CrossRefGoogle Scholar
  73. Morimoto N, Fabries J, Ferguson AK et al (1998) Nomenclature of pyroxenes subcommittee. Am Mineral 73:1123–1133Google Scholar
  74. Mormone A, Piochi M, Bellatreccia F et al (2011) A CO2-rich magma source beneath the Phlegraean Volcanic District (Southern Italy): evidence from a melt inclusion study. Chem Geol 287:66–80.  https://doi.org/10.1016/J.CHEMGEO.2011.05.019 CrossRefGoogle Scholar
  75. Ni H, Keppler H, Walte N, Schiavi F, Chen Y, Masotta M, Li Z (2014) In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks. Contrib Mineral Petrol 167:1–13.  https://doi.org/10.1007/s00410-014-1003-9 CrossRefGoogle Scholar
  76. Ni H, Hui H, Steinle-Neumann G (2015) Transport properties of silicate melts. Rev Geophys 53:715–744.  https://doi.org/10.1029/88EO01108 CrossRefGoogle Scholar
  77. Orlando A, D’Orazio M, Armienti P, Borrini D (2008) Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur J Mineral 20:653–664.  https://doi.org/10.1127/0935-1221/2008/0020-1841 CrossRefGoogle Scholar
  78. Oze C, Winter JD (2005) The occurrence, vesiculation, and solidification of dense blue glassy pahoehoe. J Volcanol Geotherm Res 142:285–301.  https://doi.org/10.1016/j.jvolgeores.2004.11.008 CrossRefGoogle Scholar
  79. Pan Y, Batiza R (2002) Mid-ocean ridge magma chamber processes: constraints from olivine zonation in lavas from the East Pacific Rise at 9°30′N and 10°30′N. J Geophys Res Solid Earth 107:ECV 9-1–ECV 9-13.  https://doi.org/10.1029/2001jb000435 CrossRefGoogle Scholar
  80. Pappalardo L, Mastrolorenzo G (2012) Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera. Sci Rep 2:712.  https://doi.org/10.1038/srep00712 CrossRefGoogle Scholar
  81. Perinelli C, Mollo S, Gaeta M et al (2018) Impulsive supply of volatile-rich magmas in the shallow plumbing system of Mt. Etna Volcano. Minerals 8:482.  https://doi.org/10.3390/min8110482 CrossRefGoogle Scholar
  82. Perinelli C, Gaeta M, Bonechi B et al (2019) Effect of water on the phase relations of primitive K-basalts: implications for high-pressure differentiation in the Phlegraean Volcanic District magmatic system. Lithos 342–343:530–541.  https://doi.org/10.1016/j.lithos.2019.05.032 CrossRefGoogle Scholar
  83. Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology, CambridgeGoogle Scholar
  84. Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53:47–66.  https://doi.org/10.1016/0377-0273(92)90073-M CrossRefGoogle Scholar
  85. Piochi M, Bruno PP, De Astis G (2005a) Relative roles of rifting tectonics and magma ascent processes: inferences from geophysical, structural, volcanological, and geochemical data for the Neapolitan volcanic region (southern Italy). Geochem Geophys Geosyst 6.  https://doi.org/10.1029/2004GC000885 CrossRefGoogle Scholar
  86. Piochi M, Mastrolorenzo G, Pappalardo L (2005b) Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull Volcanol 67:663–678.  https://doi.org/10.1007/s00445-005-0410-1 CrossRefGoogle Scholar
  87. Polacci M, Arzilli F, La Spina G et al (2018) Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography. Sci Rep 8:1–13.  https://doi.org/10.1038/s41598-018-26644-6 CrossRefGoogle Scholar
  88. Pontesilli A, Masotta M, Nazzari M et al (2019) Crystallization kinetics of clinopyroxene and titanomagnetite growing from a trachybasaltic melt: new insights from isothermal time-series experiments. Chem Geol 510:113–129.  https://doi.org/10.1016/j.chemgeo.2019.02.015 CrossRefGoogle Scholar
  89. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Reserche Aereospatiale, Electron p. Plenum Press, New York, pp 31–75Google Scholar
  90. Presnall DC, Dixon SA, Dixon JR et al (1978) Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 66:203–220.  https://doi.org/10.1007/BF00372159 CrossRefGoogle Scholar
  91. Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Mineral Petrol 155:555–570.  https://doi.org/10.1007/s00410-007-0258-9 CrossRefGoogle Scholar
  92. Putirka K (1999) Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib Mineral Petrol 135:151–163.  https://doi.org/10.1007/s004100050503 CrossRefGoogle Scholar
  93. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Reviews in Mineralogy and Geochemistry, pp 61–120Google Scholar
  94. Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554CrossRefGoogle Scholar
  95. Randolph AD, Larson MA (1971) Theory of particulate processes. Academic, New YorkGoogle Scholar
  96. Rapolla A, Fedi M, Fiume MG (1989) Crustal structure of the Ischia-Phlegrean geothermal fields, near Naples, Italy, from gravity and aeromagnetic data. Geophys J Int 97:409–419.  https://doi.org/10.1111/j.1365-246X.1989.tb00511.x CrossRefGoogle Scholar
  97. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.  https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar
  98. Shea T, Hammer JE (2013) Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J Volcanol Geotherm Res 260:127–145.  https://doi.org/10.1016/j.jvolgeores.2013.04.018 CrossRefGoogle Scholar
  99. Simakin AG, Salova TP, Armienti P (2003) Kinetics of clinopyroxene growth from a hydrous hawaiite melt. Geochem Int 41:1275–1285Google Scholar
  100. Thornber CR (2001) Olivine-liquid relations of lava erupted by Kilauea volcano from 1994 to 1998: implications for shallow magmatic processes associated with the ongoing east-rift-zone eruption. Can Mineral 39:239–266.  https://doi.org/10.2113/gscanmin.39.2.239 CrossRefGoogle Scholar
  101. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39.  https://doi.org/10.1007/s00410-004-0629-4 CrossRefGoogle Scholar
  102. Vona A, Romano C (2013) The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts. Contrib Mineral Petrol 166:491–509.  https://doi.org/10.1007/s00410-013-0887-0 CrossRefGoogle Scholar
  103. Walker D, Powell MA, Lofgren GE, Hays JF (1978) Dynamic crystallization of a eucrite basalt. In: Lunar and Planetary Science Conference Proceedings. pp 1369–1391Google Scholar
  104. Weaver SL, Wallace PJ, Johnston AD (2013) Experimental constraints on the origins of primitive potassic lavas from the Trans-Mexican Volcanic Belt. Contrib Mineral Petrol 166:825–843.  https://doi.org/10.1007/s00410-013-0921-2 CrossRefGoogle Scholar
  105. Zieg MJ, Lofgren GE (2006) An experimental investigation of texture evolution during continuous cooling. J Volcanol Geotherm Res 154:74–88.  https://doi.org/10.1016/j.jvolgeores.2005.09.020 CrossRefGoogle Scholar
  106. Zieg MJ, Marsh BD (2002) Crystal size distributions and scaling laws in the quantification of igneous textures. J Petrol 43:85–101.  https://doi.org/10.1093/petrology/43.1.85 CrossRefGoogle Scholar
  107. Zollo A, Maercklin N, Vassallo M et al (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:0–5.  https://doi.org/10.1029/2008GL034242 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly

Personalised recommendations